Fasusi, O. A., Babalola, O. O., & Adejumo, T. O. (2023). Harnessing of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi in agroecosystem sustainability. CABI Agriculture and Bioscience, 4(1), 26.
Kong, X. P., Zhang, B. H., & Wang, J. (2021). Multiple roles of mesoporous silica in safe pesticide application by nanotechnology: a review. Journal of Agricultural and Food Chemistry, 69(24), 6735–6754.
Article CAS PubMed Google Scholar
Nuruzzaman, M. D., Rahman, M. M., Liu, Y., et al. (2016). Nanoencapsulation, nano-guard for pesticides: a new window for safe application. Journal of Agricultural and Food Chemistry, 64(7), 1447–1483.
Article CAS PubMed Google Scholar
Ding, S. Y., Yi, J., Li, J. F., et al. (2016). Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nature Reviews Materials, 1(6), 1–16.
Fateixa, S., Nogueira, H. I. S., & Trindade, T. (2015). Hybrid nanostructures for SERS: materials development and chemical detection. Physical Chemistry Chemical Physics, 17(33), 21046–21071.
Article CAS PubMed Google Scholar
Jensen, L., Aikens, C. M., & Schatz, G. C. (2008). Electronic structure methods for studying surface-enhanced Raman scattering. Chemical Society Reviews, 37(5), 1061.
Article CAS PubMed Google Scholar
Masango, S. S., Hackler, R. A., Large, N., et al. (2016). High-resolution distance dependence study of surface-enhanced raman scattering enabled by atomic layer deposition. Nano Letters, 16(7), 4251–4259.
Article CAS PubMed Google Scholar
Anwar, S., Khawar, M. B., Ovais, M., et al. (2023). Gold nanocubes based optical detection of HIV-1 DNA via surface enhanced Raman spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 226, 115242.
Article CAS PubMed Google Scholar
Li, L., Cui, Q., Li, M., et al. (2023). Rapid detection of multiple colorant adulteration in Keemun black tea based on hemp spherical AgNPs-SERS. Food Chemistry, 398, 133841.
Article CAS PubMed Google Scholar
Wang, J., Wang, Z., Shi, J., Zhang, C., Zhou, Y., Da, Z., et al. (2024). Arrays of triangular Au nanoparticles with self-cleaning capacity for high-sensitivity surface-enhanced raman scattering. ACS Applied Nano Materials, 7(6), 5841–5852.
Rafiq, F., Wang, N., Li, K., et al. (2023). Au-NP-decorated cotton swabs as a facile SERS substrate for food-safety-related molecule detection. ACS Omega, 8(9), 8541–8547.
Article CAS PubMed PubMed Central Google Scholar
Dai, X., Xue, D., Liu, X., et al. (2023). An adhesive SERS substrate based on a stretched silver nanowire-tape for the in situ multicomponent analysis of pesticide residues. Analytical Methods, 15(10), 1261–1273.
Article CAS PubMed Google Scholar
Lv, M., Pu, H., & Sun, D. W. (2024). A durian-shaped multilayer core-shell SERS substrate for flow magnetic detection of pesticide residues on foods. Food Chemistry, 433, 137389.
Article CAS PubMed Google Scholar
Zhao, L., Li, T., Xu, X., et al. (2023). Polyhedral Au nanoparticle/MoOx heterojunction-enhanced ultrasensitive dual-mode biosensor for MiRna detection combined with a nonenzymatic cascade DNA amplification circuit. Analytical Chemistry, 95(24), 9271–9279.
Article CAS PubMed Google Scholar
Qingquan, G., Xinfu, M., Yu, X., et al. (2017). Green synthesis and formation mechanism of Ag nanoflowers using l-cysteine and the assessment of Ag nanoflowers as SERS substrates. Colloids and Surfaces A, 530, 33–37.
Sun, Q., Zhang, Q. Y., Zhou, N., et al. (2020). Silver-coated flower-like ZnO nanorod arrays: Ultrastable SERS substrates and the mechanisms of optical stability. Applied Surface Science, 526, 146565.
Xu, M., & Zhang, Y. (2014). Seed-mediated approach for the size-controlled synthesis of flower-like Ag mesostructures. Materials Letters, 130, 9–13.
Bian, J., Shu, S., Li, J., et al. (2015). Reproducible and recyclable SERS substrates: flower-like Ag structures with concave surfaces formed by electrodeposition. Applied Surface Science, 333, 126–133.
Zheng, H., Ni, D., Yu, Z., et al. (2016). Fabrication of flower-like silver nanostructures for rapid detection of caffeine using surface enhanced Raman spectroscopy. Sensors and Actuators B, 231, 423–430.
Hassan, M. M., Zareef, M., Jiao, T., et al. (2021). Signal optimized rough silver nanoparticle for rapid SERS sensing of pesticide residues in tea. Food Chemistry, 338, 127796.
Article CAS PubMed Google Scholar
Zhou, N., Li, D., & Yang, D. (2014). Morphology and composition controlled synthesis of flower-like silver nanostructures. Nanoscale Research Letters, 9, 1–6.
Nistico, R., Rivolo, P., Novara, C., et al. (2019). New branched flower-like Ag nanostructures for SERS analysis. Colloids and Surfaces A, 578, 123600.
Wu, D., Hu, M., Zhang, Y., et al. (2020). Long-range ordered silver nanoflower array structure for surface enhanced Raman scattering detecting. Applied Surface Science, 505, 144520.
Liu, M. (2020). Growth of nanostructured silver flowers by metal-mediated catalysis for surface-enhanced Raman spectroscopy application. ACS Omega, 5(50), 32655–32659.
Article CAS PubMed PubMed Central Google Scholar
Xing, C., Zhong, S., Yu, J., et al. (2020). Two-dimensional flower-shaped Au@ Ag nanoparticle arrays as effective SERS substrates with high sensitivity and reproducibility for detection of thiram. Journal of Materials Chemistry C, 8(11), 3838–3845.
Singh, J., Soni, R. K., Nguyen, D. D., et al. (2023). Enhanced photocatalytic and SERS performance of Ag nanoparticles functionalized MoS2 nanoflakes. Chemosphere, 339, 139735.
Article CAS PubMed Google Scholar
Singh, J., & Soni, R. K. (2021). Tunable optical properties of Au nanoparticles encapsulated TiO2 spheres and their improved sunlight mediated photocatalytic activity. Colloids and Surfaces A, 612, 126011.
Kaushik, A., Singh, J., Soni, R., et al. (2023). MoS2–Ag nanocomposite-based SERS substrates with an ultralow detection limit. ACS Applied Nano Materials, 6(11), 9236–9246.
Liang, H., Li, Z., Wang, W., et al. (2009). Highly Surface-roughened ``Flower-like’’ Silver Nanoparticles for Extremely Sensitive Substrates of Surface-enhanced Raman Scattering. Advanced Materials, 21(45), 4614–4618.
Li, J. F., Zhang, Y. J., Ding, S. Y., et al. (2017). Core–shell nanoparticle-enhanced Raman spectroscopy. Chemical reviews, 117(7), 5002–5069.
Article CAS PubMed Google Scholar
Augustine, S., Saini, M., Sooraj, K. P., et al. (2023). Au/Ag SERS active substrate for broader wavelength excitation. Optical Materials, 135, 113319.
Le Ru, E. C., Blackie, E., Meyer, M., et al. (2007). Surface enhanced raman scattering enhancement factors: A comprehensive study. The Journal of Physical Chemistry C, 111(37), 13794–13803.
Saini, R. K., Sharma, A. K., Agarwal, A., et al. (2023). Label-free detection of Thiram pesticide on flexible SERS-active substrate. Materials Chemistry and Physics, 295, 127088.
Wang, K., Yue, Z., Fang, X., et al. (2023). SERS detection of thiram using polyacrylamide hydrogel-enclosed gold nanoparticle aggregates. Science of The Total Environment, 856, 159108.
留言 (0)