Detection of pesticide residues using flower-like silver SERS substrates based on flexible sponge

Fasusi, O. A., Babalola, O. O., & Adejumo, T. O. (2023). Harnessing of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi in agroecosystem sustainability. CABI Agriculture and Bioscience, 4(1), 26.

Article  Google Scholar 

Kong, X. P., Zhang, B. H., & Wang, J. (2021). Multiple roles of mesoporous silica in safe pesticide application by nanotechnology: a review. Journal of Agricultural and Food Chemistry, 69(24), 6735–6754.

Article  CAS  PubMed  Google Scholar 

Nuruzzaman, M. D., Rahman, M. M., Liu, Y., et al. (2016). Nanoencapsulation, nano-guard for pesticides: a new window for safe application. Journal of Agricultural and Food Chemistry, 64(7), 1447–1483.

Article  CAS  PubMed  Google Scholar 

Ding, S. Y., Yi, J., Li, J. F., et al. (2016). Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nature Reviews Materials, 1(6), 1–16.

Article  Google Scholar 

Fateixa, S., Nogueira, H. I. S., & Trindade, T. (2015). Hybrid nanostructures for SERS: materials development and chemical detection. Physical Chemistry Chemical Physics, 17(33), 21046–21071.

Article  CAS  PubMed  Google Scholar 

Jensen, L., Aikens, C. M., & Schatz, G. C. (2008). Electronic structure methods for studying surface-enhanced Raman scattering. Chemical Society Reviews, 37(5), 1061.

Article  CAS  PubMed  Google Scholar 

Masango, S. S., Hackler, R. A., Large, N., et al. (2016). High-resolution distance dependence study of surface-enhanced raman scattering enabled by atomic layer deposition. Nano Letters, 16(7), 4251–4259.

Article  CAS  PubMed  Google Scholar 

Anwar, S., Khawar, M. B., Ovais, M., et al. (2023). Gold nanocubes based optical detection of HIV-1 DNA via surface enhanced Raman spectroscopy. Journal of Pharmaceutical and Biomedical Analysis, 226, 115242.

Article  CAS  PubMed  Google Scholar 

Li, L., Cui, Q., Li, M., et al. (2023). Rapid detection of multiple colorant adulteration in Keemun black tea based on hemp spherical AgNPs-SERS. Food Chemistry, 398, 133841.

Article  CAS  PubMed  Google Scholar 

Wang, J., Wang, Z., Shi, J., Zhang, C., Zhou, Y., Da, Z., et al. (2024). Arrays of triangular Au nanoparticles with self-cleaning capacity for high-sensitivity surface-enhanced raman scattering. ACS Applied Nano Materials, 7(6), 5841–5852.

Article  CAS  Google Scholar 

Rafiq, F., Wang, N., Li, K., et al. (2023). Au-NP-decorated cotton swabs as a facile SERS substrate for food-safety-related molecule detection. ACS Omega, 8(9), 8541–8547.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dai, X., Xue, D., Liu, X., et al. (2023). An adhesive SERS substrate based on a stretched silver nanowire-tape for the in situ multicomponent analysis of pesticide residues. Analytical Methods, 15(10), 1261–1273.

Article  CAS  PubMed  Google Scholar 

Lv, M., Pu, H., & Sun, D. W. (2024). A durian-shaped multilayer core-shell SERS substrate for flow magnetic detection of pesticide residues on foods. Food Chemistry, 433, 137389.

Article  CAS  PubMed  Google Scholar 

Zhao, L., Li, T., Xu, X., et al. (2023). Polyhedral Au nanoparticle/MoOx heterojunction-enhanced ultrasensitive dual-mode biosensor for MiRna detection combined with a nonenzymatic cascade DNA amplification circuit. Analytical Chemistry, 95(24), 9271–9279.

Article  CAS  PubMed  Google Scholar 

Qingquan, G., Xinfu, M., Yu, X., et al. (2017). Green synthesis and formation mechanism of Ag nanoflowers using l-cysteine and the assessment of Ag nanoflowers as SERS substrates. Colloids and Surfaces A, 530, 33–37.

Article  Google Scholar 

Sun, Q., Zhang, Q. Y., Zhou, N., et al. (2020). Silver-coated flower-like ZnO nanorod arrays: Ultrastable SERS substrates and the mechanisms of optical stability. Applied Surface Science, 526, 146565.

Article  CAS  Google Scholar 

Xu, M., & Zhang, Y. (2014). Seed-mediated approach for the size-controlled synthesis of flower-like Ag mesostructures. Materials Letters, 130, 9–13.

Article  CAS  Google Scholar 

Bian, J., Shu, S., Li, J., et al. (2015). Reproducible and recyclable SERS substrates: flower-like Ag structures with concave surfaces formed by electrodeposition. Applied Surface Science, 333, 126–133.

Article  CAS  Google Scholar 

Zheng, H., Ni, D., Yu, Z., et al. (2016). Fabrication of flower-like silver nanostructures for rapid detection of caffeine using surface enhanced Raman spectroscopy. Sensors and Actuators B, 231, 423–430.

Article  CAS  Google Scholar 

Hassan, M. M., Zareef, M., Jiao, T., et al. (2021). Signal optimized rough silver nanoparticle for rapid SERS sensing of pesticide residues in tea. Food Chemistry, 338, 127796.

Article  CAS  PubMed  Google Scholar 

Zhou, N., Li, D., & Yang, D. (2014). Morphology and composition controlled synthesis of flower-like silver nanostructures. Nanoscale Research Letters, 9, 1–6.

Article  Google Scholar 

Nistico, R., Rivolo, P., Novara, C., et al. (2019). New branched flower-like Ag nanostructures for SERS analysis. Colloids and Surfaces A, 578, 123600.

Article  CAS  Google Scholar 

Wu, D., Hu, M., Zhang, Y., et al. (2020). Long-range ordered silver nanoflower array structure for surface enhanced Raman scattering detecting. Applied Surface Science, 505, 144520.

Article  CAS  Google Scholar 

Liu, M. (2020). Growth of nanostructured silver flowers by metal-mediated catalysis for surface-enhanced Raman spectroscopy application. ACS Omega, 5(50), 32655–32659.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xing, C., Zhong, S., Yu, J., et al. (2020). Two-dimensional flower-shaped Au@ Ag nanoparticle arrays as effective SERS substrates with high sensitivity and reproducibility for detection of thiram. Journal of Materials Chemistry C, 8(11), 3838–3845.

Article  CAS  Google Scholar 

Singh, J., Soni, R. K., Nguyen, D. D., et al. (2023). Enhanced photocatalytic and SERS performance of Ag nanoparticles functionalized MoS2 nanoflakes. Chemosphere, 339, 139735.

Article  CAS  PubMed  Google Scholar 

Singh, J., & Soni, R. K. (2021). Tunable optical properties of Au nanoparticles encapsulated TiO2 spheres and their improved sunlight mediated photocatalytic activity. Colloids and Surfaces A, 612, 126011.

Article  CAS  Google Scholar 

Kaushik, A., Singh, J., Soni, R., et al. (2023). MoS2–Ag nanocomposite-based SERS substrates with an ultralow detection limit. ACS Applied Nano Materials, 6(11), 9236–9246.

Article  CAS  Google Scholar 

Liang, H., Li, Z., Wang, W., et al. (2009). Highly Surface-roughened ``Flower-like’’ Silver Nanoparticles for Extremely Sensitive Substrates of Surface-enhanced Raman Scattering. Advanced Materials, 21(45), 4614–4618.

Article  CAS  Google Scholar 

Li, J. F., Zhang, Y. J., Ding, S. Y., et al. (2017). Core–shell nanoparticle-enhanced Raman spectroscopy. Chemical reviews, 117(7), 5002–5069.

Article  CAS  PubMed  Google Scholar 

Augustine, S., Saini, M., Sooraj, K. P., et al. (2023). Au/Ag SERS active substrate for broader wavelength excitation. Optical Materials, 135, 113319.

Article  CAS  Google Scholar 

Le Ru, E. C., Blackie, E., Meyer, M., et al. (2007). Surface enhanced raman scattering enhancement factors: A comprehensive study. The Journal of Physical Chemistry C, 111(37), 13794–13803.

Article  Google Scholar 

Saini, R. K., Sharma, A. K., Agarwal, A., et al. (2023). Label-free detection of Thiram pesticide on flexible SERS-active substrate. Materials Chemistry and Physics, 295, 127088.

Article  CAS  Google Scholar 

Wang, K., Yue, Z., Fang, X., et al. (2023). SERS detection of thiram using polyacrylamide hydrogel-enclosed gold nanoparticle aggregates. Science of The Total Environment, 856, 159108.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif