Differentiation, reduction, and proliferation of pancreatic β-cells and their regulatory factors

International Diabetes Federation (IDF) Atlas 10th edition: https://diabetesatlas.org/. Accessed 1 Nov 2022

Sakurai T, Kubota S, Kato T, Yabe D. Advances in insulin therapy from discovery to β-cell replacement. J Diabetes Investigation. 2023;14(1):15–8.

Article  Google Scholar 

Inada O, Nishimura S, Seino Y, Tsuda K. Cost of medical care of type 2 diabetes mellitus outpatients: effect of healthcare reform on the diabetes clinic. J Jpn Diabetes Soc. 2005;48(9):677–84.

Google Scholar 

Inada O, Nishimura S, Seino Y, Tsuda K. Cost of direct non health care of type 2 diabetes mellitus. J Jpn Diabetes Soc. 2006;49(8):679–84.

Google Scholar 

Inada O, Nishimura S, Matsushima M, Seino Y, Tsuda K. The direct medical costs and the quality of life in patients with artificial dialysis and type 2 diabetes. J Jpn Diabetes Soc. 2007;50(1):1–8.

Google Scholar 

Inada O. Health Economics of Type 2 Diabetes. J Soc Jpn Wom Sci. 2010;11(1):51–6.

Google Scholar 

Inada O. The medical expenses in diabetes outpatient: The health-care systems affect accounting and hospital management, and issues in diabetes treatment in Japan. J Soc Jpn Wom Sci. 2020;20(1):33–40.

Google Scholar 

Weir GC, Bonner-Weir S. Five stages of evolving β-cell dysfunction during progression to diabetes. Diabetes. 2004;53(suppl3):S16-21.

Article  CAS  PubMed  Google Scholar 

Sakuraba H, Mizukami H, Yagihashi N, Wada R, Hanyu C, Yagihashi S. Reduced β-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese type II diabetic patients. Diabetologia. 2002;45(1):85–96.

Article  CAS  PubMed  Google Scholar 

Mizukami H, Takahashi K, Inaba W, Tsuboi K, Osonoi S, Yoshida T, et al. Involvement of oxidative stress-induced DNA damage, endoplasmic reticulum stress, and autophagy deficits in the decline of β-Cell mass in Japanese type 2 diabetic patients. Diabetes Care. 2014;37(7):1966–74.

Article  CAS  PubMed  Google Scholar 

Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52(1):102–10.

Article  CAS  PubMed  Google Scholar 

Yoon KH, Ko SH, Cho JH, Lee JM, Ahn YB, Song KH, et al. Selective β-cell loss and α-cell expression in patients with type 2 diabetes mellitus in Korea. J Endoclin Metab. 2007;88(5):2300–8.

Article  Google Scholar 

Kawamori D. Advances in glucagon research ~100th anniversary: invitation to the new ‘glucagon-ology.’ Diabetol Int. 2024;15(3):346–7.

Article  PubMed  Google Scholar 

Hayashi Y. Advances in basic research on glucagon and α cells. Diabetol Int. 2024;15(3):348–52.

Article  PubMed  Google Scholar 

Kitamura T, Kobayashi M. Advances in the clinical measurement of glucagon: from diagnosis to therapy. Diabetol Int. 2024;15(3):362–9.

Article  PubMed  Google Scholar 

Bonner-Weir S, Sharma A. Pancreatic stem cells. J Pathol. 2002;197(4):519–26.

Article  PubMed  Google Scholar 

Inada A, Bonner-Weir S, Toschi E. How can we get more β cells? Curr DiabRep. 2006;6(2):96–101.

Google Scholar 

Bonner-Weir S. Islet growth and development in the adult. J Mol Endoclinol. 2000;24(3):297–302.

Article  CAS  Google Scholar 

Bonner-Weir S. Postnatal pancreatic β cell growth. Endocrinology. 2000;141(6):1926–9.

Article  CAS  PubMed  Google Scholar 

Bonner-Weir S, Toschi E, Inada A, Reitz P, Fonseca SY, Aye T, et al. The pancreatic ductal epithelium serves as a potential pool of progenitor cells. Pediatr Diabetes. 2004;5(Suppl2):16–22.

Article  PubMed  Google Scholar 

Bonner-Weir S, Li WC, Ouziel-Yahalom L, Guo L, Weir GC, Sharma A. β-cell growth and regeneration: replication is only part of the story. Diabetes. 2010;59(10):2340–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bonner-Weir S, Taneja M, Weir GC, Tatarkiewicz K, Song KH, Sharma A, et al. In vitro cultivation of human islets from expanded ductal tissue. Proc Natl Acad Sci USA. 2000;97(14):7999–8004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li M, Miyagawa J, Moriwaki M, Yuan M, Yang Q, Kozawa J, et al. Analysis of expression profiles of islet-associated transcription and growth factors during β-cell neogenesis from duct cells in partially duct-ligated mice. Pancreas. 2003;27(4):345–55.

Article  CAS  PubMed  Google Scholar 

Taniguchi H, Yamato E, Tashiro F, Ikegami H, Ogihara T, Miyazaki J. β-cell neogenesis induced by adenovirus-mediated gene delivery of transcription factor pdx-1 into mouse pancreas. Gene Ther. 2003;10(1):15–23.

Article  CAS  PubMed  Google Scholar 

Inada A, Nienaber C, Fonseca S, Bonner-Weir S. Timing and expression pattern of carbonic anhydrase II in pancreas. Dev Dyn. 2006;235(6):1571–7.

Article  CAS  PubMed  Google Scholar 

Inada A, Nienaber C, Katsuta H, Fujitani Y, Morita R, Sharma A, Bonner-Weir S. CAII positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci USA. 2008;105(50):19915–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Inada A, Nienaber C, Bonner-Weir S. Endogenous β-galactosidase expression in murine pancreatic islets. Diabetologia. 2006;49(5):1120–2.

Article  CAS  PubMed  Google Scholar 

Bonner-Weir S, Inada A, Yatoh S, Li WC, Aye T, Toschi E, et al. Transdifferentiation of pancreatic ductal cells to endocrine β-cells. Biochem Soc Trans. 2008;36(Pt3):353–6.

Article  CAS  PubMed  Google Scholar 

Guo L, Inada A, Aguayo-Mazzucato C, Hollister-Lock J, Fujitani Y, Weir GC, et al. PDX1 in ducts is not required for postnatal formation of β-cells but is necessary for their subsequent maturation. Diabetes. 2013;62(10):3459–68.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Solar M, Cardalda C, Houbracken I, Martín M, Maestro MA, Medts ND, et al. Pancreatic exocrine duct cells give rise to insulin-producing β cells during embryogenesis but not after birth. Dev Cell. 2009;17(6):849–60.

Article  CAS  PubMed  Google Scholar 

Furuyama K, Kawaguchi Y, Akiyama H, Horiguchi M, Kodama S, Kuhara T, et al. Continuous cell supply from a Sox9-expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet. 2011;43(1):34–41.

Article  CAS  PubMed  Google Scholar 

Kopp JL, Dubois CL, Schaffer AE, Hao E, Shih HP, Seymour PA, et al. Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development. 2011;138(4):653–65.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang M, Lin Q, Qi T, Wang T, Chen C-C, Riggs AD, et al. Growth factors and medium hyperglycemia induce Sox9+ ductal cell differentiation into β-cells in mice with reversal of diabetes. Proc Natl Acad Sci USA. 2016;113(3):650–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rezanejad H, Ouziel-Yahalom L, Keyzer CA, Sullivan BA, Hollister-Lock J, Li W-C, et al. Heterogeneity of SOX9 and HNF1β in pancreatic ducts is dynamic. Stem Cell Reports. 2018;10(3):725–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Inagaki N, Maekawa T, Sudo T, Ishii S, Seino Y, Imura H. c-Jun represses the human insulin promoter activity that depends on multiple cAMP response elements. Proc Natl Acad Sci U S A. 1992;89(3):1045–9.

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif