Camkiran Firat A, Komurcu O, Zeyneloglu P, Turker M, Sezgin A, Pirat A (2015) Early postoperative pulmonary complications after heart transplantation. Transplant Proc 47(4):1214–1216
Article CAS PubMed Google Scholar
Lenner R, Padilla ML, Teirstein AS, Gass A, Schilero GJ (2001) Pulmonary complications in cardiac transplant recipients. Chest 120(2):508–513
Article CAS PubMed Google Scholar
Bignami E, Guarnieri M, Saglietti F, Maglioni EM, Scolletta S, Romagnoli S et al (2017) Different strategies for mechanical VENTilation during CardioPulmonary Bypass (CPBVENT 2014): study protocol for a randomized controlled trial. Trials 18(1):264
Article PubMed PubMed Central Google Scholar
Massoudy P, Zahler S, Becker BF, Braun SL, Barankay A, Meisner H (2001) Evidence for inflammatory responses of the lungs during coronary artery bypass grafting with cardiopulmonary bypass. Chest 119(1):31–36
Article CAS PubMed Google Scholar
Reber A, Budmiger B, Wenk M, Haefeli WE, Wolff T, Bein T et al (2000) Inspired oxygen fraction after cardiopulmonary bypass: effects on pulmonary function with regard to endothelin-1 concentrations and venous admixture. Br J Anaesth 84(5):565–570
Article CAS PubMed Google Scholar
Utley JR (1990) Pathophysiology of cardiopulmonary bypass: current issues. J Card Surg 5(3):177–189
Article CAS PubMed Google Scholar
Zheng XM, Yang Z, Yang GL, Huang Y, Peng JR, Wu MJ (2022) Lung injury after cardiopulmonary bypass: Alternative treatment prospects. World J Clin Cases 10(3):753–761
Article PubMed PubMed Central Google Scholar
Apostolakis E, Filos KS, Koletsis E, Dougenis D (2010) Lung dysfunction following cardiopulmonary bypass. J Card Surg 25(1):47–55
Ovechkin AV, Lominadze D, Sedoris KC, Robinson TW, Tyagi SC, Roberts AM (2007) Lung ischemia-reperfusion injury: implications of oxidative stress and platelet-arteriolar wall interactions. Arch Physiol Biochem 113(1):1–12
Article CAS PubMed PubMed Central Google Scholar
Levy JH, Tanaka KA (2003) Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg 75(2):S715–S720
Magnusson L, Zemgulis V, Wicky S, Tyden H, Thelin S, Hedenstierna G (1997) Atelectasis is a major cause of hypoxemia and shunt after cardiopulmonary bypass: an experimental study. Anesthesiology 87(5):1153–1163
Article CAS PubMed Google Scholar
Vargas FS, Terra-Filho M, Hueb W, Teixeira LR, Cukier A, Light RW (1997) Pulmonary function after coronary artery bypass surgery. Respir Med 91(10):629–633
Article CAS PubMed Google Scholar
Pons S, Sonneville R, Bouadma L, Styfalova L, Ruckly S, Neuville M et al (2019) Infectious complications following heart transplantation in the era of high-priority allocation and extracorporeal membrane oxygenation. Ann Intensive Care 9(1):17
Article PubMed PubMed Central Google Scholar
Garcia-Delgado M, Navarrete-Sanchez I, Colmenero M (2014) Preventing and managing perioperative pulmonary complications following cardiac surgery. Curr Opin Anaesthesiol 27(2):146–152
Chaney MA, Nikolov MP, Blakeman BP, Bakhos M (2000) Protective ventilation attenuates postoperative pulmonary dysfunction in patients undergoing cardiopulmonary bypass. J Cardiothorac Vasc Anesth 14(5):514–518
Article CAS PubMed Google Scholar
Chi D, Chen C, Shi Y, Wang W, Ma Y, Zhou R et al (2017) Ventilation during cardiopulmonary bypass for prevention of respiratory insufficiency: A meta-analysis of randomized controlled trials. Medicine (Baltimore) 96(12):e6454
Koner O, Celebi S, Balci H, Cetin G, Karaoglu K, Cakar N (2004) Effects of protective and conventional mechanical ventilation on pulmonary function and systemic cytokine release after cardiopulmonary bypass. Intensive Care Med 30(4):620–626
Lamarche Y, Gagnon J, Malo O, Blaise G, Carrier M, Perrault LP (2004) Ventilation prevents pulmonary endothelial dysfunction and improves oxygenation after cardiopulmonary bypass without aortic cross-clamping. Eur J Cardiothorac Surg 26(3):554–563
Naik AS, Kallapur SG, Bachurski CJ, Jobe AH, Michna J, Kramer BW et al (2001) Effects of ventilation with different positive end-expiratory pressures on cytokine expression in the preterm lamb lung. Am J Respir Crit Care Med 164(3):494–498
Article CAS PubMed Google Scholar
Reis Miranda D, Gommers D, Struijs A, Dekker R, Mekel J, Feelders R et al (2005) Ventilation according to the open lung concept attenuates pulmonary inflammatory response in cardiac surgery. Eur J Cardiothorac Surg 28(6):889–895
Tutun U, Parlar AI, Altinay L, Topcu DI, Babaroglu S, Yay K et al (2011) Does on-pump normothermic beating-heart valve surgery with low tidal volume ventilation protect the lungs? Heart Surg Forum 14(5):E297-301
Zamani MM, Najafi A, Sehat S, Janforooz Z, Derakhshan P, Rokhtabnak F et al (2017) The effect of intraoperative lung protective ventilation vs conventional ventilation, on postoperative pulmonary complications after cardiopulmonary bypass. J Cardiovasc Thorac Res 9(4):221–228
Article PubMed PubMed Central Google Scholar
Lagier D, Fischer F, Fornier W, Huynh TM, Cholley B, Guinard B et al (2019) Effect of open-lung vs conventional perioperative ventilation strategies on postoperative pulmonary complications after on-pump cardiac surgery: the PROVECS randomized clinical trial. Intensive Care Med 45(10):1401–1412
Article CAS PubMed PubMed Central Google Scholar
Nguyen LS, Estagnasie P, Merzoug M, Brusset A, Law Koune JD, Aubert S et al (2021) Low tidal volume mechanical ventilation against no ventilation during cardiopulmonary bypass in heart surgery (MECANO): a randomized controlled trial. Chest 159(5):1843–1853
See Hoe LE, Li Bassi G, Wildi K, Passmore MR, Bouquet M, Sato K et al (2023) Donor heart ischemic time can be extended beyond 9 hours using hypothermic machine perfusion in sheep. J Heart Lung Transplant 42(8):1015–1029
See Hoe LE, Wildi K, Obonyo NG, Bartnikowski N, McDonald C, Sato K et al (2021) A clinically relevant sheep model of orthotopic heart transplantation 24 h after donor brainstem death. Intensive Care Med Exp 9(1):60
Article PubMed PubMed Central Google Scholar
Bickenbach J, Zoremba N, Fries M, Dembinski R, Doering R, Ogawa E et al (2009) Low tidal volume ventilation in a porcine model of acute lung injury improves cerebral tissue oxygenation. Anesth Analg 109(3):847–855
de Haro C, Neto AS, Goma G, Gonzalez ME, Ortega A, Forteza C et al (2023) Effect of a low versus intermediate tidal volume strategy on pulmonary complications in patients at risk of acute respiratory distress syndrome-a randomized clinical trial. Front Med (Lausanne) 10:1172434
Guay J, Ochroch EA, Kopp S (2018) Intraoperative use of low volume ventilation to decrease postoperative mortality, mechanical ventilation, lengths of stay and lung injury in adults without acute lung injury. Cochrane Database Syst Rev 7(7):CD011151
Yang D, Grant MC, Stone A, Wu CL, Wick EC (2016) A meta-analysis of intraoperative ventilation strategies to prevent pulmonary complications: is low tidal volume alone sufficient to protect healthy lungs? Ann Surg 263(5):881–887
Kulkarni HS, Lee JS, Bastarache JA, Kuebler WM, Downey GP, Albaiceta GM et al (2022) Update on the features and measurements of experimental acute lung injury in animals: an official American Thoracic Society Workshop Report. Am J Respir Cell Mol Biol 66(2):e1–e14
留言 (0)