Altered degree centrality and functional connectivity in girls with central precocious puberty

Adolphs, R. (2001). The neurobiology of social cognition. Current Opinion in Neurobiology, 11(2), 231–239.

Article  CAS  PubMed  Google Scholar 

Andrews-Hanna, J. R., et al. (2010). Functional-anatomic fractionation of the brain’s default network. Neuron, 65(4), 550–562.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance (Vol. 1316, pp. 29–52). Annals of the New York Academy of Sciences. 1.

Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38(1), 95–113.

Article  PubMed  Google Scholar 

Ashburner, J., & Friston, K. J. (2005). Unified segmentation. Neuroimage, 26(3), 839–851.

Article  PubMed  Google Scholar 

Banerjee, S., & Bajpai, A. (2023). Precocious puberty. Indian Journal of Pediatrics, 90(6), 582–589.

Article  PubMed  Google Scholar 

Bradley, S. H. (2020). Precocious Puberty BMJ, 368: l6597.

Article  PubMed  Google Scholar 

Bukovsky, A., et al. (2003). Multiple luteinizing hormone receptor (LHR) protein variants, interspecies reactivity of anti-LHR mAb clone 3B5, subcellular localization of LHR in human placenta, pelvic floor and brain, and possible role for LHR in the development of abnormal pregnancy, pelvic floor disorders and Alzheimer’s disease. Reproductive Biology and Endocrinology : Rb&E, 1, 46.

Article  Google Scholar 

Cassio, A., Marescotti, G., Aversa, T., Salerno, M., Tornese, G., Stancampiano, M., Tuli, G., Faienza, MF., Cavarzere, P., Fava, D., Parpagnoli, M., Bruzzi, P., Ibba, A., Calcaterra, V., Mameli, C., Grandone, A., Cherubini, V., Assirelli, V., Franchina, F., Capalbo, D., Di Mase, R., Tamaro, G., Cavasin, J., Munarin, J., Russo, G., Wasniewska, M. (2024). Physiopathology of Growth Processes and Puberty Study Group of the Italian Society for Pediatric Endocrinology and Diabetology. Central Precocious Puberty in Italian Boys: Data From a Large Nationwide Cohort. J Clin Endocrinol Metab, 109(8), 2061–2070. https://doi.org/10.1210/clinem/dgae035. PMID: 38308814; PMCID: PMC11244209.

Chen, T., et al. (2019). Altered brain structure and Functional Connectivity Associated with Pubertal hormones in girls with precocious puberty. Neural Plasticity, 2019, p1465632.

Article  Google Scholar 

Friston, K. J., et al. (1996). Movement-related effects in fMRI time‐series. Magnetic Resonance in Medicine, 35(3), 346–355.

Article  CAS  PubMed  Google Scholar 

Fu, Y., et al. (2020). Gray Matter Differences between Premature Pubertal Girls with and without the reactivation of the hypothalamic-pituitary-gonadal Axis. Frontiers in Psychiatry, 11, 784.

Article  PubMed  PubMed Central  Google Scholar 

Ge, X. (2011). A contextual amplification hypothesis: Pubertal timing and girls’ problem behaviors. Understanding Girls’ Problem Behavior: How Girls’ Delinquency Develops in the Context of Maturity and Health, Co-Occurring Problems, and Relationships, : pp. 11–29.

Giedd, J. N., et al. (2006). Puberty-related influences on brain development. Molecular and Cellular Endocrinology, 254-255, 154–162.

Article  CAS  PubMed  Google Scholar 

Guo, W., et al. (2015a). Increased cerebellar-default-mode-network connectivity in drug-naive major depressive disorder at rest. Medicine (Baltimore), 94(9), e560.

Article  PubMed  Google Scholar 

Guo, W., et al. (2015b). Increased cerebellar functional connectivity with the default-Mode Network in Unaffected siblings of Schizophrenia patients at Rest. Schizophrenia Bulletin, 41(6), 1317–1325.

Article  PubMed  PubMed Central  Google Scholar 

Jenkinson, M., et al. (2002). Improved optimization for the Robust and Accurate Linear Registration and Motion correction of brain images. Neuroimage, 17(2), 825–841.

Article  PubMed  Google Scholar 

Klapwijk, E. T., et al. (2013). Increased functional connectivity with puberty in the mentalising network involved in social emotion processing. Hormones and Behavior, 64(2), 314–322.

Article  PubMed  PubMed Central  Google Scholar 

Lei, Z. M., et al. (1993). Novel expression of human chorionic gonadotropin/luteinizing hormone receptor gene in brain. Endocrinology, 132(5), 2262–2270.

Article  CAS  PubMed  Google Scholar 

Mark, A. H., et al. (2014). Intermittent Theta-Burst Stimulation of the lateral cerebellum increases functional connectivity of the default network. The Journal of Neuroscience, 34(36), 12049.

Article  Google Scholar 

Mercader-Yus, E., et al. (2018). Anxiety, self-esteem and body image in girls with precocious puberty. Revista Colombiana De Psiquiatria, 47(4), 229–236.

Article  Google Scholar 

Nacinovich, R., et al. (2016). Body experiences and psychopathology in idiopathic central precocious and early puberty. Minerva Pediatrica, 68(1), 11–18.

PubMed  Google Scholar 

Park, S. E., Ahn, J. Y., & Kim, E. Y. (2021). The Assessment of Brain volume differences in Idiopathic Central Precocious Puberty Girls; comparison of age-matched girls and normal puberty girls. Children, 8(9), 797.

Article  PubMed  PubMed Central  Google Scholar 

Paus, T. (1999). Structural maturation of neural pathways in children and adolescents: In vivo study. Science, 283(5409), 1908–1911.

Article  CAS  PubMed  Google Scholar 

Peper, J. S., et al. (2008). Cerebral white matter in early puberty is associated with luteinizing hormone concentrations. Psychoneuroendocrinology, 33(7), 909–915.

Article  CAS  PubMed  Google Scholar 

Power, J. D., et al. (2010). The development of human functional brain networks. Neuron, 67(5), 735–748.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rudolph, K. D. (2014). Puberty as a developmental context of risk for psychopathology, in Handbook of Developmental Psychopathology: Third Edition. pp. 331–354.

Sabatinelli, D., et al. (2011). Emotional perception: Meta-analyses of face and natural scene processing. Neuroimage, 54(3), 2524–2533.

Article  PubMed  Google Scholar 

Stoodley, C. J., & Schmahmann, J. D. (2009). Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies. Neuroimage, 44(2), 489–501.

Article  PubMed  Google Scholar 

Temelturk, R. D., et al. (2021). Managing precocious puberty: A necessity for psychiatric evaluation. Asian Journal of Psychiatry, 58, 102617.

Article  PubMed  Google Scholar 

Toffol, E., et al. (2014). Pubertal timing, menstrual irregularity, and mental health: Results of a population-based study. Archives of Women’s Mental Health, 17(2), 127–135.

Article  PubMed  Google Scholar 

van Duijvenvoorde, A. C. K., et al. (2019). A three-wave longitudinal study of subcortical-cortical resting-state connectivity in adolescence: Testing age- and puberty-related changes. Human Brain Mapping, 40(13), 3769–3783.

Article  PubMed  PubMed Central  Google Scholar 

Yan, C. G., et al. (2013). Standardizing the intrinsic brain: Towards robust measurement of inter-individual variation in 1000 functional connectomes. Neuroimage, 80, 246–262.

Article  PubMed  Google Scholar 

Yang, Y., & Raine, A. (2009). Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: A meta-analysis. Psychiatry Research: Neuroimaging, 174(2), 81–88.

Article  Google Scholar 

Yang, D., et al. (2019). Initiation of the hypothalamic-pituitary-gonadal Axis in Young girls Undergoing Central precocious puberty exerts Remodeling effects on the Prefrontal Cortex. Frontiers in Psychiatry, 10, 332.

Article  PubMed  PubMed Central  Google Scholar 

Yin, Q., et al. (2020). Direct brain recordings reveal occipital cortex involvement in memory development. Neuropsychologia, 148, 107625.

Article  PubMed  PubMed Central  Google Scholar 

Yu, W., et al. (2023). Frequency-dependent alterations in regional homogeneity associated with puberty hormones in girls with central precocious puberty: A resting-state fMRI study. Journal of Affective Disorders, 332, 176–184.

Article  PubMed  Google Scholar 

Zuo, X. N., & Xing, X. X. (2014). Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: A systems neuroscience perspective. Neuroscience & Biobehavioral Reviews, 45, 100–118.

Article  Google Scholar 

留言 (0)

沒有登入
gif