Adolphs, R. (2001). The neurobiology of social cognition. Current Opinion in Neurobiology, 11(2), 231–239.
Article CAS PubMed Google Scholar
Andrews-Hanna, J. R., et al. (2010). Functional-anatomic fractionation of the brain’s default network. Neuron, 65(4), 550–562.
Article CAS PubMed PubMed Central Google Scholar
Andrews-Hanna, J. R., Smallwood, J., & Spreng, R. N. (2014). The default network and self-generated thought: Component processes, dynamic control, and clinical relevance (Vol. 1316, pp. 29–52). Annals of the New York Academy of Sciences. 1.
Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38(1), 95–113.
Ashburner, J., & Friston, K. J. (2005). Unified segmentation. Neuroimage, 26(3), 839–851.
Banerjee, S., & Bajpai, A. (2023). Precocious puberty. Indian Journal of Pediatrics, 90(6), 582–589.
Bradley, S. H. (2020). Precocious Puberty BMJ, 368: l6597.
Bukovsky, A., et al. (2003). Multiple luteinizing hormone receptor (LHR) protein variants, interspecies reactivity of anti-LHR mAb clone 3B5, subcellular localization of LHR in human placenta, pelvic floor and brain, and possible role for LHR in the development of abnormal pregnancy, pelvic floor disorders and Alzheimer’s disease. Reproductive Biology and Endocrinology : Rb&E, 1, 46.
Cassio, A., Marescotti, G., Aversa, T., Salerno, M., Tornese, G., Stancampiano, M., Tuli, G., Faienza, MF., Cavarzere, P., Fava, D., Parpagnoli, M., Bruzzi, P., Ibba, A., Calcaterra, V., Mameli, C., Grandone, A., Cherubini, V., Assirelli, V., Franchina, F., Capalbo, D., Di Mase, R., Tamaro, G., Cavasin, J., Munarin, J., Russo, G., Wasniewska, M. (2024). Physiopathology of Growth Processes and Puberty Study Group of the Italian Society for Pediatric Endocrinology and Diabetology. Central Precocious Puberty in Italian Boys: Data From a Large Nationwide Cohort. J Clin Endocrinol Metab, 109(8), 2061–2070. https://doi.org/10.1210/clinem/dgae035. PMID: 38308814; PMCID: PMC11244209.
Chen, T., et al. (2019). Altered brain structure and Functional Connectivity Associated with Pubertal hormones in girls with precocious puberty. Neural Plasticity, 2019, p1465632.
Friston, K. J., et al. (1996). Movement-related effects in fMRI time‐series. Magnetic Resonance in Medicine, 35(3), 346–355.
Article CAS PubMed Google Scholar
Fu, Y., et al. (2020). Gray Matter Differences between Premature Pubertal Girls with and without the reactivation of the hypothalamic-pituitary-gonadal Axis. Frontiers in Psychiatry, 11, 784.
Article PubMed PubMed Central Google Scholar
Ge, X. (2011). A contextual amplification hypothesis: Pubertal timing and girls’ problem behaviors. Understanding Girls’ Problem Behavior: How Girls’ Delinquency Develops in the Context of Maturity and Health, Co-Occurring Problems, and Relationships, : pp. 11–29.
Giedd, J. N., et al. (2006). Puberty-related influences on brain development. Molecular and Cellular Endocrinology, 254-255, 154–162.
Article CAS PubMed Google Scholar
Guo, W., et al. (2015a). Increased cerebellar-default-mode-network connectivity in drug-naive major depressive disorder at rest. Medicine (Baltimore), 94(9), e560.
Guo, W., et al. (2015b). Increased cerebellar functional connectivity with the default-Mode Network in Unaffected siblings of Schizophrenia patients at Rest. Schizophrenia Bulletin, 41(6), 1317–1325.
Article PubMed PubMed Central Google Scholar
Jenkinson, M., et al. (2002). Improved optimization for the Robust and Accurate Linear Registration and Motion correction of brain images. Neuroimage, 17(2), 825–841.
Klapwijk, E. T., et al. (2013). Increased functional connectivity with puberty in the mentalising network involved in social emotion processing. Hormones and Behavior, 64(2), 314–322.
Article PubMed PubMed Central Google Scholar
Lei, Z. M., et al. (1993). Novel expression of human chorionic gonadotropin/luteinizing hormone receptor gene in brain. Endocrinology, 132(5), 2262–2270.
Article CAS PubMed Google Scholar
Mark, A. H., et al. (2014). Intermittent Theta-Burst Stimulation of the lateral cerebellum increases functional connectivity of the default network. The Journal of Neuroscience, 34(36), 12049.
Mercader-Yus, E., et al. (2018). Anxiety, self-esteem and body image in girls with precocious puberty. Revista Colombiana De Psiquiatria, 47(4), 229–236.
Nacinovich, R., et al. (2016). Body experiences and psychopathology in idiopathic central precocious and early puberty. Minerva Pediatrica, 68(1), 11–18.
Park, S. E., Ahn, J. Y., & Kim, E. Y. (2021). The Assessment of Brain volume differences in Idiopathic Central Precocious Puberty Girls; comparison of age-matched girls and normal puberty girls. Children, 8(9), 797.
Article PubMed PubMed Central Google Scholar
Paus, T. (1999). Structural maturation of neural pathways in children and adolescents: In vivo study. Science, 283(5409), 1908–1911.
Article CAS PubMed Google Scholar
Peper, J. S., et al. (2008). Cerebral white matter in early puberty is associated with luteinizing hormone concentrations. Psychoneuroendocrinology, 33(7), 909–915.
Article CAS PubMed Google Scholar
Power, J. D., et al. (2010). The development of human functional brain networks. Neuron, 67(5), 735–748.
Article CAS PubMed PubMed Central Google Scholar
Rudolph, K. D. (2014). Puberty as a developmental context of risk for psychopathology, in Handbook of Developmental Psychopathology: Third Edition. pp. 331–354.
Sabatinelli, D., et al. (2011). Emotional perception: Meta-analyses of face and natural scene processing. Neuroimage, 54(3), 2524–2533.
Stoodley, C. J., & Schmahmann, J. D. (2009). Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies. Neuroimage, 44(2), 489–501.
Temelturk, R. D., et al. (2021). Managing precocious puberty: A necessity for psychiatric evaluation. Asian Journal of Psychiatry, 58, 102617.
Toffol, E., et al. (2014). Pubertal timing, menstrual irregularity, and mental health: Results of a population-based study. Archives of Women’s Mental Health, 17(2), 127–135.
van Duijvenvoorde, A. C. K., et al. (2019). A three-wave longitudinal study of subcortical-cortical resting-state connectivity in adolescence: Testing age- and puberty-related changes. Human Brain Mapping, 40(13), 3769–3783.
Article PubMed PubMed Central Google Scholar
Yan, C. G., et al. (2013). Standardizing the intrinsic brain: Towards robust measurement of inter-individual variation in 1000 functional connectomes. Neuroimage, 80, 246–262.
Yang, Y., & Raine, A. (2009). Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: A meta-analysis. Psychiatry Research: Neuroimaging, 174(2), 81–88.
Yang, D., et al. (2019). Initiation of the hypothalamic-pituitary-gonadal Axis in Young girls Undergoing Central precocious puberty exerts Remodeling effects on the Prefrontal Cortex. Frontiers in Psychiatry, 10, 332.
Article PubMed PubMed Central Google Scholar
Yin, Q., et al. (2020). Direct brain recordings reveal occipital cortex involvement in memory development. Neuropsychologia, 148, 107625.
Article PubMed PubMed Central Google Scholar
Yu, W., et al. (2023). Frequency-dependent alterations in regional homogeneity associated with puberty hormones in girls with central precocious puberty: A resting-state fMRI study. Journal of Affective Disorders, 332, 176–184.
Zuo, X. N., & Xing, X. X. (2014). Test-retest reliabilities of resting-state FMRI measurements in human brain functional connectomics: A systems neuroscience perspective. Neuroscience & Biobehavioral Reviews, 45, 100–118.
留言 (0)