Chen JK, Thyssen JP. Metal allergy from dermatitis to implant and device failure. Cham: Springer International Publishing; 2018.
Romanos GE, Fischer GA, Delgado-Ruiz R. Titanium wear of dental implants from placement, under loading and maintenance protocols. Int J Mol Sci. 2021;22(3):1067. https://doi.org/10.3390/ijms22031067.
Article CAS PubMed PubMed Central Google Scholar
Osman RB, Swain MV. A critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials. 2015;8(3):932–58. https://doi.org/10.3390/ma8030932.
Article CAS PubMed PubMed Central Google Scholar
Chaturvedi T. Allergy related to dental implant and its clinical significance. Clin Cosmet Investig Dent. 2013;19(5):57–61. https://doi.org/10.2147/CCIDE.S35170.
Olmedo D, Tasat D, Duffo G, Cabrini R, Guglielmotti M. Systemic and local tissue response to titanium corrosion. 2012.
Sansone V, Pagani D, Melato M. The effects on bone cells of metal ions released from orthopaedic implants a review. Clin Cases Miner Bone Metab. 2013;10(1):34–40. https://doi.org/10.11138/ccmbm/2013.10.1.034.
Article PubMed PubMed Central Google Scholar
Pettersson M, Almlin S, Romanos GE, Johansson A. Ti ions induce IL-1β release by activation of the NLRP3 inflammasome in a human macrophage cell line. Inflammation. 2022;45(5):2027–37. https://doi.org/10.1007/s10753-022-01672-7.
Article CAS PubMed Google Scholar
Zhou Z, Shi Q, Wang J, Chen X, Hao Y, Zhang Y, Wang X. The unfavorable role of titanium particles released from dental implants. Nanotheranostics. 2021;5(3):321–32. https://doi.org/10.7150/ntno.56401.
Article PubMed PubMed Central Google Scholar
Soler MD, Hsu SM, Fares C, Ren F, Jenkins RJ, Gonzaga L, Clark AE, O’Neill E, Neal D, Esquivel-Upshaw JF. Titanium corrosion in peri-implantitis. Materials. 2020;13(23):5488. https://doi.org/10.3390/ma13235488.
Article CAS PubMed PubMed Central Google Scholar
Noumbissi S, Scarano A, Gupta S. A literature review study on atomic ions dissolution of titanium and its alloys in implant dentistry. Materials. 2019;12(3):368. https://doi.org/10.3390/ma12030368.
Article CAS PubMed PubMed Central Google Scholar
Fretwurst T, Nelson K, Tarnow DP, Wang HL, Giannobile WV. Is metal particle release associated with peri-implant bone destruction? An Emerging Concept J Dent Res. 2018;97(3):259–65. https://doi.org/10.1177/0022034517740560.
Article CAS PubMed Google Scholar
Pettersson M. On titanium release from dental implants and the inflammatory response [Internet] [PhD dissertation]. [Umeå]: Umeå universitet; 2018. (Umeå University odontological dissertations). Available from https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-147119. Accessed 2023 Nov 9. 147119.
Amine M, Merdma W, El Boussiri K. Electrogalvanism in oral implantology: a systematic review. Int J Dent. 2022;5(2022):4575416. https://doi.org/10.1155/2022/4575416.
Safioti LM, Kotsakis GA, Pozhitkov AE, Chung WO, Daubert DM. Increased levels of dissolved titanium are associated with peri-implantitis—a cross-sectional study. J Periodontol. 2017;88(5):436–42. https://doi.org/10.1902/jop.2016.160524.
Article CAS PubMed Google Scholar
FDA. Biological Responses to Metal Implants [PDF]. Center for Devices & Radiological Health. 2019. https://www.fda.gov/media/131150/download. Accessed 12 Dec 2023.
Kotsakis GA, Lan C, Barbosa J, Lill K, Chen R, Rudney J, Aparicio C. Antimicrobial agents used in the treatment of peri-implantitis alter the physicochemistry and cytocompatibility of titanium surfaces. J Periodontol. 2016;87(7):809–19. https://doi.org/10.1902/jop.2016.150684.
Article CAS PubMed Google Scholar
Valente F, Scarano A, Murmura G, Varvara G, Sinjari B, Mandelli F, Piattelli M, Caputi S, Traini T. Collagen fibres orientation in the bone matrix around dental implants: does the implant’s thread design play a role? Int J Mol Sci. 2021;22(15):7860. https://doi.org/10.3390/ijms22157860.
Article CAS PubMed PubMed Central Google Scholar
Carolina MDAM, Mariana SB, Victor G, Nicolas N, Ana PDSF, et al. Histological analysis of osseointegrated zirconia implant in human: case report. Int J Innov Surg. 2023;6(1):1029.
Soloviev A, Schwarz EM, Darowish M, O’Keefe RJ. Sphingomyelinase mediates macrophage activation by titanium particles independent of phagocytosis: a role for free radicals, NFkappaB, and TNFalpha. J Orthop Res. 2005;23(6):1258–65. https://doi.org/10.1016/j.orthres.2005.03.019.1100230604.
Article CAS PubMed Google Scholar
He X, Hartlieb E, Rothmund L, Waschke J, Wu X, Van Landuyt KL, Milz S, Michalke B, Hickel R, Reichl FX, Högg C. Intracellular uptake and toxicity of three different Titanium particles. Dent Mater. 2015;31(6):734–44. https://doi.org/10.1016/j.dental.2015.03.017.
Article CAS PubMed Google Scholar
Lammel T, Mackevica A, Johansson BR, et al. Endocytosis, intracellular fate, accumulation, and agglomeration of titanium dioxide (TiO2) nanoparticles in the rainbow trout liver cell line RTL-W1. Environ Sci Pollut Res. 2019;26:15354–72. https://doi.org/10.1007/s11356-019-04856-1.
Huerta-García E, Ramos-Godinez MDP, López-Saavedra A, Alfaro-Moreno E, Gómez-Crisóstomo NP, Colín-Val Z, Sánchez-Barrera H, López-Marure R. Internalization of titanium dioxide nanoparticles is mediated by actin-dependent reorganization and clathrin- and dynamin-mediated endocytosis in h9c2 rat cardiomyoblasts. Chem Res Toxicol. 2019;32(4):578–88. https://doi.org/10.1021/acs.chemrestox.8b00284.
Article CAS PubMed Google Scholar
Thurn KT, Arora H, Paunesku T, Wu A, Brown EM, Doty C, Kremer J, Woloschak G. Endocytosis of titanium dioxide nanoparticles in prostate cancer PC-3M cells. Nanomedicine. 2011;7(2):123–30. https://doi.org/10.1016/j.nano.2010.09.004.
Article CAS PubMed Google Scholar
Ribeiro AR, Gemini-Piperni S, Travassos R, Lemgruber L, Silva RC, Rossi AL, Farina M, Anselme K, Shokuhfar T, Shahbazian-Yassar R, Borojevic R, Rocha LA, Werckmann J, Granjeiro JM. Trojan-like internalization of anatase titanium dioxide nanoparticles by human osteoblast cells. Sci Rep. 2016;6:23615. https://doi.org/10.1038/srep23615.
Article CAS PubMed PubMed Central Google Scholar
Apaza-Bedoya K, Bijukumar D, Benfatti CAM, Mathew MT, da Silva JSP, Souza JCM. Adverse local and systemic effect of nanoparticles released from oral and cranio-maxillofacial implants. In: Souza JCM, Hotza D, Henriques B, Boccaccini AR, editors. In Advanced Nanomaterials, Nanostructured Biomaterials for Cranio-Maxillofacial and Oral Applications. Amsterdam: Elsevier; 2018. p. 63–79.
Chan EPH, Mhawi A, Clode P, Saunders M, Filgueira L. Effects of titanium(IV) ions on human monocyte-derived dendritic cells. Metallomics. 2009. https://doi.org/10.1039/b820871a.
Sund J, Palomäki J, Ahonen N, Savolainen K, Alenius H, Puustinen A. Phagocytosis of nano-sized titanium dioxide triggers changes in protein acetylation. J Proteomics. 2014;28(108):469–83. https://doi.org/10.1016/j.jprot.2014.06.011.
Noronha Oliveira M, Schunemann WVH, Mathew MT, Henriques B, Magini RS, Teughels W, Souza JCM. Can degradation products released from dental implants affect peri-implant tissues? J Periodontal Res. 2018;53(1):1–11. https://doi.org/10.1111/jre.12479.
Article CAS PubMed Google Scholar
Wang X, Li Y, Feng Y, Cheng H, Li D. Macrophage polarization in aseptic bone resorption around dental implants induced by Ti particles in a murine model. J Periodontal Res. 2019;54(4):329–38. https://doi.org/10.1111/jre.12633.
Article CAS PubMed Google Scholar
Hirayama T, Tamaki Y, Takakubo Y, Iwazaki K, Sasaki K, Ogino T, Goodman SB, Konttinen YT, Takagi M. Toll-like receptors and their adaptors are regulated in macrophages after phagocytosis of lipopolysaccharide-coated titanium particles. J Orthop Res. 2011;29(7):984–92. https://doi.org/10.1002/jor.21369.
Article CAS PubMed Google Scholar
Chen P, Kanehira K, Taniguchi A. Role of toll-like receptors 3, 4 and 7 in cellular uptake and response to titanium dioxide nanoparticles. Sci Technol Adv Mater. 2013;14(1): 015008. https://doi.org/10.1088/1468-6996/14/1/015008.
留言 (0)