The systemic and local interactions related to titanium implant corrosion and hypersensitivity reactions: a narrative review of the literature

Chen JK, Thyssen JP. Metal allergy from dermatitis to implant and device failure. Cham: Springer International Publishing; 2018.

Book  Google Scholar 

Romanos GE, Fischer GA, Delgado-Ruiz R. Titanium wear of dental implants from placement, under loading and maintenance protocols. Int J Mol Sci. 2021;22(3):1067. https://doi.org/10.3390/ijms22031067.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Osman RB, Swain MV. A critical review of dental implant materials with an emphasis on titanium versus zirconia. Materials. 2015;8(3):932–58. https://doi.org/10.3390/ma8030932.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chaturvedi T. Allergy related to dental implant and its clinical significance. Clin Cosmet Investig Dent. 2013;19(5):57–61. https://doi.org/10.2147/CCIDE.S35170.

Article  CAS  Google Scholar 

Olmedo D, Tasat D, Duffo G, Cabrini R, Guglielmotti M. Systemic and local tissue response to titanium corrosion. 2012.

Sansone V, Pagani D, Melato M. The effects on bone cells of metal ions released from orthopaedic implants a review. Clin Cases Miner Bone Metab. 2013;10(1):34–40. https://doi.org/10.11138/ccmbm/2013.10.1.034.

Article  PubMed  PubMed Central  Google Scholar 

Pettersson M, Almlin S, Romanos GE, Johansson A. Ti ions induce IL-1β release by activation of the NLRP3 inflammasome in a human macrophage cell line. Inflammation. 2022;45(5):2027–37. https://doi.org/10.1007/s10753-022-01672-7.

Article  CAS  PubMed  Google Scholar 

Zhou Z, Shi Q, Wang J, Chen X, Hao Y, Zhang Y, Wang X. The unfavorable role of titanium particles released from dental implants. Nanotheranostics. 2021;5(3):321–32. https://doi.org/10.7150/ntno.56401.

Article  PubMed  PubMed Central  Google Scholar 

Soler MD, Hsu SM, Fares C, Ren F, Jenkins RJ, Gonzaga L, Clark AE, O’Neill E, Neal D, Esquivel-Upshaw JF. Titanium corrosion in peri-implantitis. Materials. 2020;13(23):5488. https://doi.org/10.3390/ma13235488.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Noumbissi S, Scarano A, Gupta S. A literature review study on atomic ions dissolution of titanium and its alloys in implant dentistry. Materials. 2019;12(3):368. https://doi.org/10.3390/ma12030368.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fretwurst T, Nelson K, Tarnow DP, Wang HL, Giannobile WV. Is metal particle release associated with peri-implant bone destruction? An Emerging Concept J Dent Res. 2018;97(3):259–65. https://doi.org/10.1177/0022034517740560.

Article  CAS  PubMed  Google Scholar 

Pettersson M. On titanium release from dental implants and the inflammatory response [Internet] [PhD dissertation]. [Umeå]: Umeå universitet; 2018. (Umeå University odontological dissertations). Available from https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-147119. Accessed 2023 Nov 9. 147119.

Amine M, Merdma W, El Boussiri K. Electrogalvanism in oral implantology: a systematic review. Int J Dent. 2022;5(2022):4575416. https://doi.org/10.1155/2022/4575416.

Article  CAS  Google Scholar 

Safioti LM, Kotsakis GA, Pozhitkov AE, Chung WO, Daubert DM. Increased levels of dissolved titanium are associated with peri-implantitis—a cross-sectional study. J Periodontol. 2017;88(5):436–42. https://doi.org/10.1902/jop.2016.160524.

Article  CAS  PubMed  Google Scholar 

FDA. Biological Responses to Metal Implants [PDF]. Center for Devices & Radiological Health. 2019. https://www.fda.gov/media/131150/download. Accessed 12 Dec 2023.

Kotsakis GA, Lan C, Barbosa J, Lill K, Chen R, Rudney J, Aparicio C. Antimicrobial agents used in the treatment of peri-implantitis alter the physicochemistry and cytocompatibility of titanium surfaces. J Periodontol. 2016;87(7):809–19. https://doi.org/10.1902/jop.2016.150684.

Article  CAS  PubMed  Google Scholar 

Valente F, Scarano A, Murmura G, Varvara G, Sinjari B, Mandelli F, Piattelli M, Caputi S, Traini T. Collagen fibres orientation in the bone matrix around dental implants: does the implant’s thread design play a role? Int J Mol Sci. 2021;22(15):7860. https://doi.org/10.3390/ijms22157860.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carolina MDAM, Mariana SB, Victor G, Nicolas N, Ana PDSF, et al. Histological analysis of osseointegrated zirconia implant in human: case report. Int J Innov Surg. 2023;6(1):1029.

Google Scholar 

Soloviev A, Schwarz EM, Darowish M, O’Keefe RJ. Sphingomyelinase mediates macrophage activation by titanium particles independent of phagocytosis: a role for free radicals, NFkappaB, and TNFalpha. J Orthop Res. 2005;23(6):1258–65. https://doi.org/10.1016/j.orthres.2005.03.019.1100230604.

Article  CAS  PubMed  Google Scholar 

He X, Hartlieb E, Rothmund L, Waschke J, Wu X, Van Landuyt KL, Milz S, Michalke B, Hickel R, Reichl FX, Högg C. Intracellular uptake and toxicity of three different Titanium particles. Dent Mater. 2015;31(6):734–44. https://doi.org/10.1016/j.dental.2015.03.017.

Article  CAS  PubMed  Google Scholar 

Lammel T, Mackevica A, Johansson BR, et al. Endocytosis, intracellular fate, accumulation, and agglomeration of titanium dioxide (TiO2) nanoparticles in the rainbow trout liver cell line RTL-W1. Environ Sci Pollut Res. 2019;26:15354–72. https://doi.org/10.1007/s11356-019-04856-1.

Article  CAS  Google Scholar 

Huerta-García E, Ramos-Godinez MDP, López-Saavedra A, Alfaro-Moreno E, Gómez-Crisóstomo NP, Colín-Val Z, Sánchez-Barrera H, López-Marure R. Internalization of titanium dioxide nanoparticles is mediated by actin-dependent reorganization and clathrin- and dynamin-mediated endocytosis in h9c2 rat cardiomyoblasts. Chem Res Toxicol. 2019;32(4):578–88. https://doi.org/10.1021/acs.chemrestox.8b00284.

Article  CAS  PubMed  Google Scholar 

Thurn KT, Arora H, Paunesku T, Wu A, Brown EM, Doty C, Kremer J, Woloschak G. Endocytosis of titanium dioxide nanoparticles in prostate cancer PC-3M cells. Nanomedicine. 2011;7(2):123–30. https://doi.org/10.1016/j.nano.2010.09.004.

Article  CAS  PubMed  Google Scholar 

Ribeiro AR, Gemini-Piperni S, Travassos R, Lemgruber L, Silva RC, Rossi AL, Farina M, Anselme K, Shokuhfar T, Shahbazian-Yassar R, Borojevic R, Rocha LA, Werckmann J, Granjeiro JM. Trojan-like internalization of anatase titanium dioxide nanoparticles by human osteoblast cells. Sci Rep. 2016;6:23615. https://doi.org/10.1038/srep23615.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Apaza-Bedoya K, Bijukumar D, Benfatti CAM, Mathew MT, da Silva JSP, Souza JCM. Adverse local and systemic effect of nanoparticles released from oral and cranio-maxillofacial implants. In: Souza JCM, Hotza D, Henriques B, Boccaccini AR, editors. In Advanced Nanomaterials, Nanostructured Biomaterials for Cranio-Maxillofacial and Oral Applications. Amsterdam: Elsevier; 2018. p. 63–79.

Google Scholar 

Chan EPH, Mhawi A, Clode P, Saunders M, Filgueira L. Effects of titanium(IV) ions on human monocyte-derived dendritic cells. Metallomics. 2009. https://doi.org/10.1039/b820871a.

Article  PubMed  Google Scholar 

Sund J, Palomäki J, Ahonen N, Savolainen K, Alenius H, Puustinen A. Phagocytosis of nano-sized titanium dioxide triggers changes in protein acetylation. J Proteomics. 2014;28(108):469–83. https://doi.org/10.1016/j.jprot.2014.06.011.

Article  CAS  Google Scholar 

Noronha Oliveira M, Schunemann WVH, Mathew MT, Henriques B, Magini RS, Teughels W, Souza JCM. Can degradation products released from dental implants affect peri-implant tissues? J Periodontal Res. 2018;53(1):1–11. https://doi.org/10.1111/jre.12479.

Article  CAS  PubMed  Google Scholar 

Wang X, Li Y, Feng Y, Cheng H, Li D. Macrophage polarization in aseptic bone resorption around dental implants induced by Ti particles in a murine model. J Periodontal Res. 2019;54(4):329–38. https://doi.org/10.1111/jre.12633.

Article  CAS  PubMed  Google Scholar 

Hirayama T, Tamaki Y, Takakubo Y, Iwazaki K, Sasaki K, Ogino T, Goodman SB, Konttinen YT, Takagi M. Toll-like receptors and their adaptors are regulated in macrophages after phagocytosis of lipopolysaccharide-coated titanium particles. J Orthop Res. 2011;29(7):984–92. https://doi.org/10.1002/jor.21369.

Article  CAS  PubMed  Google Scholar 

Chen P, Kanehira K, Taniguchi A. Role of toll-like receptors 3, 4 and 7 in cellular uptake and response to titanium dioxide nanoparticles. Sci Technol Adv Mater. 2013;14(1): 015008. https://doi.org/10.1088/1468-6996/14/1/015008.

Article 

留言 (0)

沒有登入
gif