Preventing troublesome variability in clinical blood pressure measurement

Shalom E, Hirshtal E, Slotki I, Shavit L, Yitzhaky Y, Engelberg S, et al. Systolic blood pressure measurement by detecting the photoplethysmographic pulses and electronic Korotkoff-sounds during cuff deflation. Physiol Meas. 2020;41:034001.

Article  PubMed  Google Scholar 

Pickering TG, Hall JE, Appel LJ, Falkner BE, Graves J, Hill MN, et al. Recommendations for blood pressure measurement in humans and experimental animals - Part 1: Blood pressure measurement in humans - A statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation. 2005;111:697–716.

Article  PubMed  Google Scholar 

Palafox B, Goryakin Y, Stuckler D, Suhrcke M, Balabanova D, Alhabib KF, et al. Does greater individual social capital improve the management of hypertension? Cross-national analysis of 61 229 individuals in 21 countries. BMJ Glob Health. 2017;2:e000443.

Article  PubMed  PubMed Central  Google Scholar 

Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365:217–23.

Article  PubMed  Google Scholar 

Herakova N, Nwobodo NHN, Wang Y, Chen F, Zheng D. Effect of respiratory pattern on automated clinical blood pressure measurement: an observational study with normotensive subjects. Clin Hypertens. 2017;23:15.

Article  PubMed  PubMed Central  Google Scholar 

Liu J, Hu SC, Xiao ZJ, Hu QH, Wang DM, Yang CW. A novel interpretable feature set optimization method in blood pressure estimation using photoplethysmography signals. Biomed Signal Process Control. 2023;86:105184.

Article  CAS  Google Scholar 

Ding XR, Zhang YT, Tsang HK. Impact of heart disease and calibration interval on accuracy of pulse transit time-based blood pressure estimation. Physiol Meas. 2016;37:227–37.

Article  PubMed  Google Scholar 

Jones DW, Appel LJ, Sheps SG, Roccella EJ, Lenfant C. Measuring blood pressure accurately - New and persistent challenges. JAMA. 2003;289:1027–30.

Article  PubMed  Google Scholar 

Pa F, He PY, Che F, Zhan J, Wan H, Zhen DC. A novel deep learning based automatic auscultatory method to measure blood pressure. Int J Med Inform. 2019;128:71–78.

Article  Google Scholar 

Liu CY, Griffiths C, Murray A, Zheng DC. Comparison of stethoscope bell and diaphragm, and of stethoscope tube length, for clinical blood pressure measurement. Blood Press Monit. 2016;21:178–83.

Article  PubMed  PubMed Central  Google Scholar 

Celler BG, Le P, Basilakis J, Ambikairajah E. Improving the quality and accuracy of non-invasive blood pressure measurement by visual inspection and automated signal processing of the Korotkoff sounds. Physiol Meas. 2017;38:1006–22.

Article  PubMed  Google Scholar 

White WB, Berson AS, Robbins C, Jamieson MJ, Prisant LM, Roccella E, et al. National standard for measurement of resting and ambulatory blood pressures with automated sphygmomanometers. Hypertension. 1993;21:504–9.

Article  CAS  PubMed  Google Scholar 

Kessler R. The Minamata Convention on Mercury: a first step toward protecting future generations. Environ Health Perspect. 2013;121:A304–A9.

Yang FW, Chen F, Zhu MP, Chen AQ, Zheng DC. Significantly reduced blood pressure measurement variability for both normotensive and hypertensive subjects: effect of polynomial curve fitting of oscillometric pulses. Biomed Res Int. 2017;1:5201069.

Google Scholar 

Forouzanfar M, Dajani HR, Groza VZ, Bolic M, Rajan S, Batkin I. Oscillometric blood pressure estimation: past, present, and future. IEEE Rev Biomed Eng. 2015;8:44–63.

Article  PubMed  Google Scholar 

Liu C, Zheng D, Griffiths C, Murray A Oscillometric waveform difference between cuff inflation and deflation during blood pressure measurement. In 2014 Computing in Cardiology Conference. 2014; 849–52.

Fonseca-Reyes S, Fajardo-Flores I, Montes-Casillas M, Forsyth-MacQuarrie A. Differences and effects of medium and large adult cuffs on blood pressure readings in individuals with muscular arms. Blood Press Monit. 2009;14:166–71.

Article  PubMed  Google Scholar 

Lee S, Chang JH, Nam SW, Lim C, Rajan S, Dajani HR, et al. Oscillometric blood pressure estimation based on maximum amplitude algorithm employing gaussian mixture regression. IEEE Trans Instrum Meas. 2013;62:3387–9.

Article  Google Scholar 

Liu J, Li YM, Li JQ, Zheng DC, Liu CY. Sources of automatic office blood pressure measurement error: a systematic review. Physiol Meas. 2022;43:09TR02.

Article  Google Scholar 

Beevers G, Lip GYH, O’Brien E. ABC of hypertension - Blood pressure measurement Part II - Conventional sphygmomanometry: technique of auscultatory blood pressure measurement. BMJ-Br Med J. 2001;322:1043–7.

Article  CAS  Google Scholar 

O’Brien E, Asmar R, Beilin L, Imai Y, Mallion JM, Mancia G, et al. European Society of hypertension recommendations for conventional, ambulatory and home blood pressure measurement. J Hypertens. 2003;21:821–48.

Article  PubMed  Google Scholar 

Zheng D, Liu C, Amoore J, Mieke S, Murray A. Need for re-validation of automated blood pressure devices for use in unstable conditions. Comput Cardiol Conf. 2015;2015:17–20.

Google Scholar 

Kallioinen N, Hill A, Horswill MS, Ward HE, Watson MO. Sources of inaccuracy in themeasurement of adult patients’ resting blood pressure in clinical settings: a systematic review. J Hypertens. 2017;35:421–41.

Article  CAS  PubMed  Google Scholar 

Familoni OB, Olunuga TO. Comparison of the effects of arm position and support on blood pressure in hypertensive and normotensive subjects: cardiovascular topic. Cardiovasc J South Afr. 2005;16:85–88.

CAS  Google Scholar 

Eşer İ, Khorshid L, Yapucu Güneş Ü, Demir Y. The effect of different body positions on blood pressure. J Clin Nurs. 2007;16:137–40.

Article  PubMed  Google Scholar 

Pinar R, Ataalkin S, Watson R. The effect of crossing legs on blood pressure in hypertensive patients. J Clin Nurs. 2010;19:1284–8.

Article  PubMed  Google Scholar 

Zheng D, Giovannini R, Murray A. Effect of respiration, talking and small body movements on blood pressure measurement. J Hum Hypertens. 2012;26:458–62.

Article  CAS  PubMed  Google Scholar 

Le Pailleur C, Montgermont P, Feder JM, Metzger JP, Vacheron A. Talking effect and “white coat” effect in hypertensive patients: physical effort or emotional content? Behav Med. 2001;26:149–57.

Article  PubMed  Google Scholar 

Laude D, Goldman M, Escourrou P, Elghozi JL. Effect of breathing pattern on blood pressure and heart rate oscillations in humans. Clin Exp Pharmacol Physiol. 1993;20:619–26.

Article  CAS  PubMed  Google Scholar 

Pan F, He PY, Chen F, Pu XB, Zhao QJ, Zheng DC. Deep learning-based automatic blood pressure measurement: evaluation of the effect of deep breathing, talking and arm movement. Ann Med. 2019;51:397–403.

Article  PubMed  PubMed Central  Google Scholar 

Liu J, Murray A, Li J, Liu C Influence of finger movement on the stability of the oscillometric pulse waveform for blood pressure measurement. In 2021 Computing in Cardiology Conference. 2021; 48: 1–4.

Kurtz TW, Griffin KA, Bidani AK, Davisson RL, Hall JE. Recommendations for blood pressure measurement in humans and experimental animals - Part 2: Blood pressure measurement in experimental animals - A statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension. 2005;45:299–310.

Article  CAS  PubMed  Google Scholar 

Williams B, Poulter NR, Brown MJ, Davis M, McInnes GT, Potter JF, et al. Guidelines for management of hypertension: Report of the fourth working party of the British Hypertension Society, 2004 - BHSIV. J Hum Hypertens. 2004;18:139–85.

Article  CAS  PubMed  Google Scholar 

Zheng DC, Amoore JN, Mieke S, Murray A. How important is the recommended slow cuff pressure deflation rate for blood pressure measurement? Ann Biomed Eng. 2011;39:2584–91.

Article  PubMed  Google Scholar 

Yong PG, Geddes LA. The effect of cuff pressure deflation rate on accuracy in indirect measurement of blood pressure with the auscultatory method. J Clin Monit. 1987;3:155–9.

Article  CAS  PubMed  Google Scholar 

Cahan A, Ben-Dov IZ, Bursztyn M. Association of heart rate with blood pressure variability: implications for blood pressure measurement. Am J Hypertens. 2012;25:313–8.

Article  CAS  PubMed  Google Scholar 

Murray A, Zheng D. Newcastle University of Upon Tyne. Improved sphygmomanometer capable of displaying the quality of blood pressure readings. U S Pat Appl 2016;14/902:028.

Google Sch

留言 (0)

沒有登入
gif