Similarity between oxygen evolution in photosystem II and oxygen reduction in cytochrome c oxidase via proton coupled electron transfers. A unified view of the oxygenic life from four electron oxidation–reduction reactions

Wydrzynski, T. J., & Satoh, K. (2005). Photosystem II: The light-driven water: plastoquinone oxidoreductase, advances in photosynthesis and respiration (Vol. 22). Springer.

Google Scholar 

Shen, J.-R., Satoh, K., & Allakhverdiev, S. I. (2021). Photosynthesis: Molecular approaches to solar energy conversion, advances in photosynthesis and respiration (Vol. 47). Springer.

Book  Google Scholar 

Wikström, M., Krab, K., & Sharma, V. (2018). Oxygen activation and energy conservation by cytochrome c oxidase. Chemical Reviews, 118, 2469–2490. https://doi.org/10.1021/acs.chemrev.7b00664

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yoshikawa, S., & Shimada, A. (2015). Reaction mechanism of cytochrome c oxidase. Chemical Reviews, 115, 1936–1989. https://doi.org/10.1021/cr500266a

Article  CAS  PubMed  Google Scholar 

Solomon, E. I., Sundaram, U. M., & Machonkin, T. E. (1996). Multicopper oxidases and oxygenases. Chemical Reviews, 96, 2563–2606. https://doi.org/10.1021/cr950046o

Article  CAS  PubMed  Google Scholar 

Solomon, E. I., Heppner, D. E., Johnston, E. M., Ginsbach, J. W., Cirera, J., Qayyum, M., Kieber-Emmons, M. T., Kjaergaard, C. H., Hadt, R. G., & Tian, L. (2014). Copper active sites in biology. Chemical Reviews, 114, 3659–3853. https://doi.org/10.1021/cr400327t

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zouni, A., Witt, H.-T., Kern, J., Fromme, P., Krauss, N., Saenger, W., & Orth, P. (2001). Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature, 409, 739–743. https://doi.org/10.1038/35055589

Article  CAS  PubMed  Google Scholar 

Umena, Y., Kawakami, K., Shen, J.-R., & Kamiya, N. (2011). Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature, 473, 55–60. https://doi.org/10.1038/nature09913

Article  CAS  PubMed  Google Scholar 

Tsukihara, T., Aoyama, H., Yamashita, E., Tomizaki, T., Yamaguchi, H., Shinzawa-Itoh, K., Nakajima, R., Yaono, R., & Yoshikawa, S. (1995). Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å. Science, 269, 1069–1074. https://doi.org/10.1126/science.7652554

Article  CAS  PubMed  Google Scholar 

Wikström, M., & Sharma, V. (2018). Proton pumping by cytochrome c oxidase—A 40 year anniversary. Biochimica et Biophysica Acta - Bioenergetics, 1859, 692–698. https://doi.org/10.1016/j.bbabio.2018.03.009

Article  CAS  PubMed  Google Scholar 

Hirata, K., Shinzawa-Itoh, K., Yano, N., Takemura, S., Kato, K., Hatanaka, M., Muramoto, K., Kawahara, T., Tsukihara, T., Yamashita, E., Tono, K., Ueno, G., Hikima, T., Murakiami, H., Inubushi, Y., Yabashi, M., Ishikawa, T., Yamamoto, M., Ogura, T., … Ago, H. (2014). Determination of damage-free crystal structure of an X-ray–sensitive protein using an XFEL. Nature Methods, 11, 734–736. https://doi.org/10.1038/nmeth.2962

Article  CAS  PubMed  Google Scholar 

Hoganson, C. W., Pressler, M. A., Proshlyakov, D. A., & Babcock, G. T. (1998). From water to oxygen and back again: Mechanistic similarities in the enzymatic redox conversion between water and dioxygen. Biochimica et Biophysica Acta - Bioenergetics, 1365, 170–174. https://doi.org/10.1016/S0005-2728(98)00057-7

Article  CAS  Google Scholar 

Wikström, M., & Verkhovsky, M. I. (2006). Towards the mechanism of proton pumping by the haem-copper oxidases. Biochimica et Biophysica Acta - Bioenergetics, 1757, 1047–1051. https://doi.org/10.1016/j.bbabio.2006.01.010

Article  CAS  Google Scholar 

Silverstein, T. P. (2011). Photosynthetic water oxidation vs. mitochondrial oxygen reduction: Distinct mechanistic parallels. Journal of Bioenergetics and Biomembranes, 43, 437–446. https://doi.org/10.1007/s10863-011-9370-7

Article  CAS  PubMed  Google Scholar 

Gunner, M. R., Amin, M., Zhu, X., & Lu, J. (2013). Molecular mechanisms for generating transmembrane proton gradients. Biochimica et Biophysica Acta - Bioenergetics, 1827, 892–913. https://doi.org/10.1016/j.bbabio.2013.03.001

Article  CAS  Google Scholar 

Blomberg, M. R. A. (2016). Mechanism of oxygen reduction in cytochrome c oxidase and the role of the active site tyrosine. Biochemistry, 55, 489–500. https://doi.org/10.1021/acs.biochem.5b01205

Article  CAS  PubMed  Google Scholar 

Kern, J., Chatterjee, R., Young, I. D., Fuller, F. D., Lassalle, L., Ibrahim, M., Gul, S., Fransson, T., Brewster, A. S., Alonso-Mori, R., Hussein, R., Zhang, M., Douthit, L., de Lichtenberg, C., Cheah, M. H., Shevela, D., Wersig, J., Seuffert, I., Sokaras, D., … Yachandra, V. K. (2018). Structures of the intermediates of Kok’s photosynthetic water oxidation clock. Nature, 563, 421–425. https://doi.org/10.1038/s41586-018-0681-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suga, M., Akita, F., Yamashita, K., Nakajima, Y., Ueno, G., Li, H., Yamane, T., Hirata, K., Umena, Y., Yonekura, S., Yu, L. J., Murakami, H., Nomura, T., Kimura, T., Kubo, M., Baba, S., Kumasaka, T., Tono, K., Yabashi, M., … Shen, J. R. (2019). An oxyl/oxo mechanism for oxygen-oxygen coupling in PSII revealed by an x-ray free-electron laser. Science, 366, 334–338. https://doi.org/10.1126/science.aax6998

Article  CAS  PubMed  Google Scholar 

Shimada, A., Kubo, M., Baba, S., Yamashita, K., Hirata, K., Ueno, G., Nomura, T., Kimura, T., Shinzawa-Itoh, K., Baba, J., Hatano, K., Eto, Y., Miyamoto, A., Murakami, H., Kumasaka, T., Owada, S., Tono, K., Yabashi, M., Yamaguchi, Y., Yanagisawa, S., Sakaguchi, M., Ogura, T., Komiya, R., Yan, J., Yamashita, E., Yamamoto, M., Ago, H., Yoshikawa, S., & Tsukihara, T. (2017). A nanosecond time-resolved XFEL analysis of structural changes associated with CO release from cytochrome c oxidase. Science Advances, 3, e1603042 (2017). https://doi.org/10.1126/sciadv.1603042

Yamaguchi, K., Miyagawa, K., Shoji, M., Kawakami, T., Isobe, H., Yamanaka, S., & Nakajima, T. (2023). Theoretical elucidation of the structure, bonding, and reactivity of the CaMn4Ox clusters in the whole Kok cycle for water oxidation embedded in the oxygen evolving center of photosystem II. New molecular and quantum insights into the mechanism of the O–O bond formation. Photosynthesis Research. https://doi.org/10.1007/s11120-023-01053-7. In press.

Article  PubMed  Google Scholar 

Miyagawa, K., Shoji, M., Isobe, H., Yamanaka, S., Kawakami, T., Okumura, M., & Yamaguchi, K. (2020). Theory of chemical bonds in metalloenzymes XXIV electronic and spin structures of FeMoco and Fe-S clusters by classical and quantum computing. Molecular Physics, 118, e1760388. https://doi.org/10.1080/00268976.2020.1760388

Article  CAS  Google Scholar 

Thouless, D. J. (1960). Stability conditions and nuclear rotations in the Hartree-Fock theory. Nuclear Physics, 21, 225–232. https://doi.org/10.1016/0029-5582(60)90048-1

Article  CAS  Google Scholar 

Čížek, J., & Paldus, J. (1967). Stability conditions for the solutions of the Hartree—Fock equations for atomic and molecular systems. Application to the pi-electron model of cyclic polyenes. The Journal of Chemical Physics, 47, 3976–3985. https://doi.org/10.1063/1.1701562

Article  Google Scholar 

Fukutome, H. (1968). Spin density wave and charge transfer wave in long conjugated molecules. Progress of Theoretical Physics, 40, 998–1012. https://doi.org/10.1143/PTP.40.998

Article  Google Scholar 

Paldus, J., & Čížek, J. (1970). Stability conditions for the solutions of the Hartree-Fock equations for atomic and molecular systems. II. Simple open-shell case. The Journal of Chemical Physics, 52, 2919–2936. https://doi.org/10.1063/1.1673419

Article  CAS  Google Scholar 

Coester, F. (1958). Bound states of a many-particle system. Nuclear Physics, 7, 421–424. https://doi.org/10.1016/0029-5582(58)90280-3

Article  Google Scholar 

Coester, F., & Kümmel, H. (1960). Short-range correlations in nuclear wave functions. Nuclear Physics, 17, 477–485. https://doi.org/10.1016/0029-5582(60)90140-1

Article  CAS  Google Scholar 

Čížek, J. (1966). On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in ursell-type expansion using quantum-field theoretical methods. The Journal of Chemical Physics, 45, 4256–4266. https://doi.org/10.1063/1.1727484

Article  Google Scholar 

Paldus, J., Čížek, J., & Shavitt, I. (1972). Correlation problems in atomic and molecular systems. IV. Extended coupled-pair many-electron theory and its application to the BH3 molecule. Physical Review A, 5, 50–67. https://doi.org/10.1103/PhysRevA.5.50

Article  Google Scholar 

Bartlett, R. J., & Purvis, G. D. (1978). Many-body perturbation theory, coupled-pair many-electron theory, and the importance of quadruple excitations for the correlation problem. International Journal of Quantum Chemistry, 14, 561–581. https://doi.org/10.1002/qua.560140504

Article  CAS  Google Scholar 

Yamaguchi, K. (1980). Multireference (MR) configuration interaction (CI) approach for quasidegenerate systems. International Journal of Quantum Chemistry, 18, 269–284.

留言 (0)

沒有登入
gif