Mitochondrial DNA 3243 mutation may be associated with positivity of zinc transporter 8 autoantibody in cases of slowly progressive type 1 diabetes mellitus

Kobayashi T, Tamemoto K, Nakanishi K, Kato N, Okubo M, Kajio H, et al. Immunogenetic and clinical characterization of slowly progressive IDDM. Diabetes Care. 1993;16(5):780–8. https://doi.org/10.2337/diacare.16.5.780.

Article  CAS  PubMed  Google Scholar 

Hawa MI, Kolb H, Schloot N, Beyan H, Paschou SA, Buzzetti R, et al. Adult-onset autoimmune diabetes in Europe is prevalent with a broad clinical phenotype: action LADA 7. Diabetes Care. 2013;36(4):908–13. https://doi.org/10.2337/dc12-0931.

Article  PubMed  PubMed Central  Google Scholar 

Kawasaki E, Nakamura K, Kuriya G, Satoh T, Kuwahara H, Kobayashi M, et al. Autoantibodies to insulin, insulinoma-associated antigen-2, and zinc transporter 8 improve the prediction of early insulin requirement in adult-onset autoimmune diabetes. J Clin Endocrinol Metab. 2010;95(2):707–13. https://doi.org/10.1210/jc.2009-1733.

Article  CAS  PubMed  Google Scholar 

van den Ouweland JM, Lemkes HH, Ruitenbeek W, Sandkuijl LA, de Vijlder MF, Struyvenberg PA, et al. Mutation in mitochondrial tRNA(Leu)(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nat Genet. 1992;1(5):368–71. https://doi.org/10.1038/ng0892-368.

Article  PubMed  Google Scholar 

Kawabata Y, Ikegami H, Awata T, Imagawa A, Maruyama T, Kawasaki E, et al. Differential association of HLA with three subtypes of type 1 diabetes: fulminant, slowly progressive and acute-onset. Diabetologia. 2009;52(12):2513–21. https://doi.org/10.1007/s00125-009-1539-9.

Article  CAS  PubMed  Google Scholar 

Shimada A, Kawasaki E, Abiru N, Awata T, Oikawa Y, Osawa H, et al. New diagnostic criteria (2023) for slowly progressive type 1 diabetes (SPIDDM): report from Committee on Type 1 Diabetes in Japan Diabetes Society (English version). Diabetol Int. 2024;15(1):1–4. https://doi.org/10.1007/s13340-023-00679-1.

Article  PubMed  Google Scholar 

Tanaka S, Okubo M, Nagasawa K, Takizawa S, Ichijo M, Ichijo S, et al. Predictive value of titer of GAD antibodies for further progression of beta cell dysfunction in slowly progressive insulin-dependent (type 1) diabetes (SPIDDM). Diabetol Int. 2016;7(1):42–52. https://doi.org/10.1007/s13340-015-0211-5.

Article  PubMed  Google Scholar 

Suzuki S, Oka Y, Kadowaki T, Kanatsuka A, Kuzuya T, Kobayashi M, et al. Clinical features of diabetes mellitus with the mitochondrial DNA 3243 (A–G) mutation in Japanese: maternal inheritance and mitochondria-related complications. Diabetes Res Clin Pract. 2003;59(3):207–17. https://doi.org/10.1016/s0168-8227(02)00246-2.

Article  CAS  PubMed  Google Scholar 

Oka Y, Katagiri H, Yazaki Y, Murase T, Kobayashi T. Mitochondrial gene mutation in islet-cell-antibody-positive patients who were initially non-insulin-dependent diabetics. Lancet. 1993;342(8870):527–8. https://doi.org/10.1016/0140-6736(93)91649-7.

Article  CAS  PubMed  Google Scholar 

Kobayashi T, Oka Y, Katagiri H, Falorni A, Kasuga A, Takei I, et al. Association between HLA and islet cell antibodies in diabetic patients with a mitochondrial DNA mutation at base pair 3243. Diabetologia. 1996;39(10):1196–200. https://doi.org/10.1007/BF02658506.

Article  CAS  PubMed  Google Scholar 

Taniyama M, Kasuga A, Suzuki Y, Ozawa Y, Handa M, Kobayashi A, et al. Absence of antibodies to ICA512/IA-2 in NIDDM patients with the mitochondrial DNA bp 3243 mutation. Diabetes Care. 1997;20(5):905–6. https://doi.org/10.2337/diacare.20.5.905.

Article  CAS  PubMed  Google Scholar 

Baekkeskov S, Aanstoot HJ, Christgau S, Reetz A, Solimena M, Cascalho M, et al. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature. 1990;347(6289):151–6. https://doi.org/10.1038/347151a0.

Article  CAS  PubMed  Google Scholar 

Lan MS, Lu J, Goto Y, Notkins AL. Molecular cloning and identification of a receptor-type protein tyrosine phosphatase, IA-2, from human insulinoma. DNA Cell Biol. 1994;13(5):505–14. https://doi.org/10.1089/dna.1994.13.505.

Article  CAS  PubMed  Google Scholar 

Wenzlau JM, Juhl K, Yu L, Moua O, Sarkar SA, Gottlieb P, et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci U S A. 2007;104(43):17040–5. https://doi.org/10.1073/pnas.0705894104.

Article  PubMed  PubMed Central  Google Scholar 

Rofe AM, Philcox JC, Coyle P. Activation of glycolysis by zinc is diminished in hepatocytes from metallothionein-null mice. Biol Trace Elem Res. 2000;75(1–3):87–97. https://doi.org/10.1385/BTER:75:1-3:87.

Article  CAS  PubMed  Google Scholar 

Tamaki N, Ikeda T, Funatsuka A. Zinc as activating cation for muscle glycolysis. J Nutr Sci Vitaminol. 1983;29(6):655–62. https://doi.org/10.3177/jnsv.29.655.

Article  CAS  PubMed  Google Scholar 

Sun Q, Zhong W, Zhang W, Zhou Z. Defect of mitochondrial respiratory chain is a mechanism of ROS overproduction in a rat model of alcoholic liver disease: role of zinc deficiency. Am J Physiol Gastrointest Liver Physiol. 2016;310(3):G205–14. https://doi.org/10.1152/ajpgi.00270.2015.

Article  PubMed  Google Scholar 

Audano M, Pedretti S, Cermenati G, Brioschi E, Diaferia GR, Ghisletti S, et al. Zc3h10 is a novel mitochondrial regulator. EMBO Rep. 2018. https://doi.org/10.15252/embr.201745531.

Article  PubMed  PubMed Central  Google Scholar 

Olgar Y, Tuncay E, Turan B. Mitochondria-targeting antioxidant provides cardioprotection through regulation of cytosolic and mitochondrial Zn(2+) levels with re-distribution of Zn(2+)-transporters in aged rat cardiomyocytes. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20153783.

Article  PubMed  PubMed Central  Google Scholar 

Zhang X, Guan T, Yang B, Chi Z, Wang ZY, Gu HF. A novel role for zinc transporter 8 in the facilitation of zinc accumulation and regulation of testosterone synthesis in Leydig cells of human and mouse testicles. Metabolism. 2018;88:40–50. https://doi.org/10.1016/j.metabol.2018.09.002.

Article  CAS  PubMed  Google Scholar 

Chung CY, Singh K, Kotiadis VN, Valdebenito GE, Ahn JH, Topley E, et al. Constitutive activation of the PI3K-Akt-mTORC1 pathway sustains the m.3243 A > G mtDNA mutation. Nat Commun. 2021;12(1):6409. https://doi.org/10.1038/s41467-021-26746-2.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sakane T, Takeno M, Suzuki N, Inaba G. Behcet’s disease. N Engl J Med. 1999;341(17):1284–91. https://doi.org/10.1056/NEJM199910213411707.

Article  CAS  PubMed  Google Scholar 

Nagafuchi H, Takeno M, Yoshikawa H, Kurokawa MS, Nara K, Takada E, et al. Excessive expression of Txk, a member of the Tec family of tyrosine kinases, contributes to excessive Th1 cytokine production by T lymphocytes in patients with Behcet’s disease. Clin Exp Immunol. 2005;139(2):363–70. https://doi.org/10.1111/j.1365-2249.2004.02688.x.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shimizu J, Takai K, Takada E, Fujiwara N, Arimitsu N, Ueda Y, et al. Possible association of proinflammatory cytokines including IL1beta and TNFalpha with enhanced Th17 cell differentiation in patients with Behcet’s disease. Clin Rheumatol. 2016;35(7):1857–63. https://doi.org/10.1007/s10067-015-2966-2.

Article  PubMed  Google Scholar 

Kirectepe Aydin AK, Hatemi G. Heat shock proteins in Behcet syndrome. Balkan Med J. 2023;40(5):314–23. https://doi.org/10.4274/balkanmedj.galenos.2023.2023-6-76.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yazici H. The place of Behcet’s syndrome among the autoimmune diseases. Int Rev Immunol. 1997;14(1):1–10. https://doi.org/10.3109/08830189709116840.

Article  CAS  PubMed  Google Scholar 

de Menthon M, Lavalley MP, Maldini C, Guillevin L, Mahr A. HLA-B51/B5 and the risk of Behcet’s disease: a systematic review and meta-analysis of case-control genetic association studies. Arthritis Rheum. 2009;61(10):1287–96. https://doi.org/10.1002/art.24642.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif