Allen B, Agarwal S, Coombs L et al (2021) 2020 ACR Data Science Institute artificial intelligence survey. J Am Coll Radiol 18:1153–1159
Cè M, Ibba S, Cellina M et al (2024) Radiologists’ perceptions on AI integration: an in-depth survey study. Eur J Radiol 177:111590
Sammer MBK, Akbari YS, Barth RA et al (2023) Use of artificial intelligence in radiology: impact on pediatric patients, a white paper from the ACR Pediatric AI Workgroup. J Am Coll Radiol 20:730–737
Coughlin S, Roberts D, O’Neill K et al (2018) Looking to tomorrow’s healthcare today: a participatory health perspective. Intern Med J 48:92–96
Roser M, Ritchie H, Mathieu E. What is Moore’s law? Our world data [Internet]. 2024. Available at: https://ourworldindata.org/moores-law. Accessed Oct 2024
van de Wetering R, Batenburg R (2009) A PACS maturity model: a systematic meta-analytic review on maturation and evolvability of PACS in the hospital enterprise. Int J Med Inf 78:127–140
Jiang J (Xuefeng), Qi K, Bai G et al (2023) Pre-pandemic assessment: a decade of progress in electronic health record adoption among U.S. hospitals. Health Aff Sch 1:qxad056
Bubeck S, Chandrasekaran V, Eldan R et al. Sparks of artificial general intelligence: early experiments with GPT-4. https://doi.org/10.48550/arXiv.2303.12712
Müller VC, Bostrom N. Future progress in artificial intelligence: a survey of expert opinion. Fundam Issues Artif Intell [Internet]. 555–72;2016. https://doi.org/10.1007/978-3-319-26485-1_33
Fjelland R (2020) Why general artificial intelligence will not be realized. Humanit Soc Sci Commun 7(1):1–9. https://doi.org/10.1057/s41599-020-0494-4
Yu AC, Mohajer B, Eng J (2022) External validation of deep learning algorithms for radiologic diagnosis: a systematic review. Radiol Artif Intell. 4:e210064
Article PubMed PubMed Central Google Scholar
Tayebi Arasteh S, Kuhl C, Saehn MJ et al (2023) Enhancing domain generalization in the AI-based analysis of chest radiographs with federated learning. Sci Rep. 13:22576
Article CAS PubMed PubMed Central Google Scholar
Tejani AS, Retson TA, Moy L et al (2023) Detecting common sources of AI bias: questions to ask when procuring an AI solution. Radiology. 307:e230580
Montagnon E, Cerny M, Cadrin-Chênevert A et al (2020) Deep learning workflow in radiology: a primer. Insights Imaging 11:22
Article PubMed PubMed Central Google Scholar
Ahluwalia M, Abdalla M, Sanayei J et al (2023) The subgroup imperative: chest radiograph classifier generalization gaps in patient, setting, and pathology subgroups. Radiol Artif Intell 5(5):e220270
Article PubMed PubMed Central Google Scholar
What is data labeling? - Data labeling explained - AWS. Amaz Web Serv Inc [Internet]. Available at: https://aws.amazon.com/what-is/data-labeling/. Accessed Oct 2024
Seeram E, Seeram D (2008) Image postprocessing in digital radiology—a primer for technologists. J Med Imaging Radiat Sci 39:23–41
What is NLP (natural language processing)? | IBM. 2021. Available at: https://www.ibm.com/topics/natural-language-processing. Accessed Oct 2024
Marcus E, Teuwen J (2024) Artificial intelligence and explanation: how, why, and when to explain black boxes. Eur J Radiol 173:111393
Chen H, Gomez C, Huang CM et al (2022) Explainable medical imaging AI needs human-centered design: guidelines and evidence from a systematic review. Npj Digit Med 5:1–15
Transparent-AI. Available at: https://www.acrdsi.org/DSI-Services/AI-Central/Transparent-AI. Accessed Oct 2024
Reyes M, Meier R, Pereira S et al (2020) On the interpretability of artificial intelligence in radiology: challenges and opportunities. Radiol Artif Intell 2:e190043
Article PubMed PubMed Central Google Scholar
AI vs. machine learning vs. deep learning vs. neural networks | IBM. 2024. Available at: https://www.ibm.com/think/topics/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks. Accessed Oct 2024
Tomaszewski MR, Gillies RJ (2021) The biological meaning of radiomic features. Radiology 298:505–516
Chauhan NK, Singh K (2018) A review on conventional machine learning vs deep learning. 2018 Int Conf Comput Power Commun Technol GUCON [Internet]. 347–52. https://doi.org/10.1109/GUCON.2018.8675097. Available at: https://ieeexplore.ieee.org/abstract/document/8675097. Accessed Oct 2024
Jung KH (2023) Uncover this tech term: foundation model. Korean J Radiol. 24:1038
Article PubMed PubMed Central Google Scholar
Moor M, Banerjee O, Abad ZSH et al (2023) Foundation models for generalist medical artificial intelligence. Nature 616:259–265
Article CAS PubMed Google Scholar
Test scores of AI systems on various capabilities relative to human performance. Our world data [Internet]. Available at: https://ourworldindata.org/grapher/test-scores-ai-capabilities-relative-human-performance. Accessed Oct 2024
Almeida LC, Farina EMJM, Kuriki PEA et al (2024) Performance of ChatGPT on the Brazilian radiology and diagnostic imaging and mammography board examinations. Radiol Artif Intell. 6:e230103
Bhayana R, Krishna S, Bleakney RR (2023) Performance of ChatGPT on a radiology board-style examination: insights into current strengths and limitations. Radiology 307:e230582
Keshavarz P, Bagherieh S, Nabipoorashrafi SA et al (2024) ChatGPT in radiology: a systematic review of performance, pitfalls, and future perspectives. Diagn Interv Imaging 105:251–265
Toyama Y, Harigai A, Abe M et al (2024) Performance evaluation of ChatGPT, GPT-4, and Bard on the official board examination of the Japan Radiology Society. Jpn J Radiol 42:201–207
Reith TP, D’Alessandro DM, D’Alessandro MP. Capability of multimodal large language models to interpret pediatric radiological images. Pediatr Radiol [Internet]. 2024. https://doi.org/10.1007/s00247-024-06025-0
What is generative AI? NVIDIA [Internet]. Available at: https://www.nvidia.com/en-us/glossary/generative-ai/. Accessed Oct 2024
What is generative AI? IBM Res [Internet]. 2021. Available at: https://research.ibm.com/blog/what-is-generative-AI. Accessed Oct 2024
Kim W (2024) Seeing the unseen: advancing generative AI research in radiology. Radiology 311:e240935
Lodwick GS, Haun CL, Smith WE et al (1963) Computer diagnosis of primary bone tumors. Radiology 80:273–275
AI landscape. Available at: https://aicentral.acrdsi.org/AI-Landscape. Accessed Oct 2024
Padash S, Mohebbian MR, Adams SJ et al (2022) Pediatric chest radiograph interpretation: how far has artificial intelligence come? A systematic literature review. Pediatr Radiol 52(8):1568–1580. https://doi.org/10.1007/s00247-022-05368-w
Article PubMed PubMed Central Google Scholar
Oliveira H, Penteado L, Maciel JL et al (2021) Automatic segmentation of posterior fossa structures in pediatric brain MRIs. 2021 34th SIBGRAPI Conf Graph Patterns Images SIBGRAPI [Internet]. 121–8. https://doi.org/10.1109/SIBGRAPI54419.2021.00025. Available at: https://ieeexplore.ieee.org/abstract/document/9643115. Accessed Oct 2024
Gilligan LA, Towbin AJ, Dillman JR et al (2020) Quantification of skeletal muscle mass: sarcopenia as a marker of overall health in children and adults. Pediatr Radiol 50(4):455–464. https://doi.org/10.1007/s00247-019-04562-7
Gjesvik J, Moshina N, Lee CI et al (2024) Artificial intelligence algorithm for subclinical breast cancer detection. JAMA Netw Open 7:e2437402
Article PubMed PubMed Central Google Scholar
Marcinkiewicz AM, Buchwald M, Shanbhag A et al (2024) AI for multistructure incidental findings and mortality prediction at chest CT in lung cancer screening. Radiology 312:e240541
Koetzier LR, Mastrodicasa D, Szczykutowicz TP et al (2023) Deep learning image reconstruction for CT: technical principles and clinical prospects. Radiology 306:e221257
Gallo-Bernal S, Bedoya MA, Gee MS et al (2023) Pediatric magnetic resonance imaging: faster is better. Pediatr Radiol 53:1270–1284
Shin DJ, Choi YH, Lee SB et al (2024) Low-i
留言 (0)