Al-Anany, A. M., Fatima, R., & Hynes, A. P. (2021). Temperate phage-antibiotic synergy eradicates bacteria through depletion of lysogens. Cell Reports, 35, 109172.
Article CAS PubMed Google Scholar
Al-Anany, A. M., Fatima, R., Nair, G., Mayol, J. T., & Hynes, A. P. (2024). Temperate phage-antibiotic synergy across antibiotic classes reveals new mechanism for preventing lysogeny. Mbio, 15, e0050424.
Alcock, B. P., Raphenya, A. R., Lau, T. T. Y., Tsang, K. K., Bouchard, M., Edalatmand, A., Huynh, W., Nguyen, A. V., Cheng, A. A., Liu, S., et al. (2020). CARD 2020: ANTIBIOTIC resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Research, 48, D517–D525.
Berry, J., Summer, E. J., Struck, D. K., & Young, R. (2008). The final step in the phage infection cycle: The Rz and Rz1 lysis proteins link the inner and outer membranes. Molecular Microbiology, 70, 341–351.
Article CAS PubMed PubMed Central Google Scholar
Bolduc, B., Jang, H. B., Doulcier, G., You, Z. Q., Roux, S., & Sullivan, M. B. (2017). vConTACT: An iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria. PeerJ, 5, e3243.
Article PubMed PubMed Central Google Scholar
Boyd, E. F. (2012). Bacteriophage-encoded bacterial virulence factors and phage-pathogenicity island interactions. Advances in Virus Research, 82, 91–118.
Article CAS PubMed Google Scholar
Boyd, E. F., & Brüssow, H. (2002). Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends in Microbiology, 10, 521–529.
Article CAS PubMed Google Scholar
Brown, J., Pirrung, M., & McCue, L. A. (2017). FQC Dashboard: Integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics, 33, 3137–3139.
Article CAS PubMed PubMed Central Google Scholar
Bylund, J., Campsall, P., Ma, R., Conway, B., & Speert, D. (2005). Burkholderia cenocepacia induces neutrophil necrosis in chronic granulomatous disease. The Journal of Immunology, 174, 3562–3569.
Article CAS PubMed Google Scholar
Chan, P. P., & Lowe, T. M. (2019). tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods in Molecular Biology, 1962, 1–14.
Article CAS PubMed Google Scholar
Chaudhary, N., Maurya, R. K., Singh, D., Mohan, B., & Taneja, N. (2022). Genome analysis and antibiofilm activity of phage 590B against multidrug-resistant and extensively drug-resistant uropathogenic Escherichia coli isolates. India. Pathogens, 11, 1448.
Article CAS PubMed Google Scholar
Chen, L., Yang, J., Yu, J., Yao, Z., Sun, L., Shen, Y., & Jin, Q. (2005). VFDB: A reference database for bacterial virulence factors. Nucleic Acids Research, 33, D325–D328.
Article CAS PubMed Google Scholar
Chen, Y., Li, X., Song, J., Yang, D., Liu, W., Chen, H., Wu, B., & Qian, P. (2019). Isolation and characterization of a novel temperate bacteriophage from gut-associated Escherichia within black soldier fly larvae. Archives of Virology, 164, 2277–2284.
Article CAS PubMed Google Scholar
Chen, Y., Yang, L., Yang, D., Song, J., Wang, C., Sun, E., Gu, C., Chen, H., Tong, Y., Tao, P., et al. (2020). Specific integration of temperate phage decreases the pathogenicity of host bacteria. Frontiers in Cellular and Infection Microbiology, 10, 14.
Article CAS PubMed PubMed Central Google Scholar
Cho, J. H., Kwon, J. G., O’Sullivan, D. J., Ryu, S., & Lee, J. H. (2021). Development of an endolysin enzyme and its cell wall-binding domain protein and their applications for biocontrol and rapid detection of Clostridium perfringens in food. Food Chemistry, 345, 128562.
Article CAS PubMed Google Scholar
Chung, I. Y., Sim, N., & Cho, Y. H. (2012). Antibacterial efficacy of temperate phage-mediated inhibition of bacterial group motilities. Antimicrobial Agents and Chemotherapy, 56, 5612–5617.
Article CAS PubMed PubMed Central Google Scholar
Clokie, M. R., Millard, A. D., Letarov, A. V., & Heaphy, S. (2011). Phages in Nature. Bacteriophage, 1, 31–45.
Conway, B., Venu, V., & Speert, D. (2002). Biofilm formation and acyl homoserine lactone production in the Burkholderia cepacia complex. Journal of Bacteriology, 184, 5678–5685.
Article CAS PubMed PubMed Central Google Scholar
Courtney, J., Dunbar, K., McDowell, A., Moore, J., Warke, T., Stevenson, M., & Elborn, J. (2004). Clinical outcome of Burkholderia cepacia complex infection in cystic fibrosis adults. Journal of Cystic Fibrosis, 3, 93–98.
Article CAS PubMed Google Scholar
Darling, A. E., Mau, B., & Perna, N. T. (2010). progressiveMauve: Multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE, 5, e11147.
Article PubMed PubMed Central Google Scholar
Davies, E., Winstanley, C., Fothergill, J., & James, C. (2016). The role of temperate bacteriophages in bacterial infection. FEMS Microbiology Letters, 363, fnw015.
Davis, R., & Brown, P. D. (2016). Multiple antibiotic resistance index, fitness and virulence potential in respiratory Pseudomonas aeruginosa from Jamaica. Journal of Medical Microbiology, 65, 261–271.
Article CAS PubMed Google Scholar
Davis, J. J., Wattam, A. R., Aziz, R. K., Brettin, T., Butler, R., Butler, R. M., Chlenski, P., Conrad, N., Dickerman, A., Dietrich, E. M., et al. (2020). The PATRIC Bioinformatics Resource Center: Expanding data and analysis capabilities. Nucleic Acids Research, 48, D606–D612.
Davis, C. M., Ruest, M. K., Cole, J. H., & Dennis, J. J. (2022). The isolation and characterization of a broad host range Bcep22-like Podovirus JC1. Viruses, 14, 938.
Article CAS PubMed PubMed Central Google Scholar
Depoorter, E., Bull, M., Peeters, C., Coenye, T., Vandamme, P., & Mahenthiralingam, E. (2016). Burkholderia: An update on taxonomy and biotechnological potential as antibiotic producers. Applied Microbiology and Biotechnology, 100, 5215–5229.
Article CAS PubMed Google Scholar
Desai, M., Bühler, T., Weller, P. H., & Brown, M. R. (1998). Increasing resistance of planktonic and biofilm cultures of Burkholderia cepacia to ciprofloxacin and ceftazidime during exponential growth. Journal of Antimicrobial Chemotherapy, 42, 153–160.
Article CAS PubMed Google Scholar
El Chakhtoura, G., Saade, E., Wilson, B., Perez, F., Papp-Wallace, K., & Bonomo, R. (2017). A 17-year nationwide study of Burkholderia cepacia complex bloodstream infections among patients in the United States Veterans Health Administration. Clinical Infectious Diseases, 65, 1327–1334.
Article PubMed Central Google Scholar
Eram, S., Behzadian Nejad, Q., Khatami, G., & Nafissi, N. (2004). Detection of Burkholderia cepacia complex in patients with cystic fibrosis. Tanaffos Tanaffos, 3, 47–52.
Eriksson, H., Maciejewska, B., Latka, A., Majkowska-Skrobek, G., Hellstrand, M., Melefors, Ö., Wang, J.-T., Kropinski, A. M., Drulis-Kawa, Z., & Nilsson, A. S. (2015). A suggested new bacteriophage genus, “Kp34likevirus”, within the Autographivirinae subfamily of Podoviridae. Viruses, 7, 1804–1822.
Article CAS PubMed PubMed Central Google Scholar
Gordillo Altamirano, F. L., & Barr, J. J. (2019). Phage therapy in the postantibiotic era. Clinical Microbiology Reviews, 32, e00066-e118.
Article PubMed PubMed Central Google Scholar
Groth, A. C., & Calos, M. P. (2004). Phage integrases: Biology and applications. Journal of Molecular Biology, 335, 667–678.
Article CAS PubMed Google Scholar
Gurevich, A., & Saveliev, V. (2013). QUAST: Quality assessment tool for genome assemblies. Bioinformatics, 29, 1072–1075.
留言 (0)