Application of Convolutional Neural Network (CNN) and different other techniques for the restoration of degraded folk artworks: a comparative performance analysis

W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity, the bulletin of mathematical biophysics. 5, 115–133 (1943)

D.O. Hebb, The Organisation of Behaviour: A Neuropsychological Theory (Science Editions, New York, 1949)

Google Scholar 

B.W.A.C. Farley, W. Clark, Simulation of self-organizing systems by digital computer, transactions of the IRE Professional Group on Information Theory. 4, 76–84 (1954)

N. Rochester, J. Holland, L. Haibt, W. Duda, Tests on a cell assembly theory of the action of the brain, using a large digital computer. IRE Trans. Inform. Theory. 2, 80–93 (1956)

C.D. Wang, Z. Li, D. Li, N. Wang, A. Dey, L. Biswas, R.S. Moraru, Sherratt, An efficient local binary pattern based plantar pressure optical sensor image classification using convolutional neural networks, Optik. 185, 543 – 55 (2019)

D.H. Hubel, T.N. Wiesel, Brain and Visual Perception: The story of a 25-year collaboration. (Oxford University Press, 2004)

J. Schmidhuber, Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

A.G. Ivakhnenko, A.G. Ivakhnenko, V.G. Lapa, V.G. Lapa, Cybernetics and forecasting techniques. Am. Elsevier Publishing Co. 8, (1967)

E. Dănilă, L. Moraru, N. Dey, A.S. Ashour, F. Shi, S.J. Fong, S. Khan, A. Biswas, Multifractal analysis of ceramic pottery SEM images in Cucuteni-Tripolye culture, Optik. 164, 538–546 (2018)

D. Rumelhart, McClelland.(Eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1 (MIT Press, Cambridge, MA, 1986)

Book  Google Scholar 

J. Weng, N. Ahuja, T.S. Huang, Cresceptron: a self-organizing neural network which grows adaptively, IJCNN International Joint Conference on Neural Networks IEEE. 1, 576–581 (1992)

J. Schmidhuber, Learning complex, extended sequences using the principle of history compression. Neural Comput. (4), 234–242 (1992)

S. Behnke, Hierarchical Neural Networks for Image Interpretation (Springer, 2003). 2766

L. Moraru, S. Moldovanu, S. Khan, A. Biswas, Digital Image Processing using wavelets: 71 Basic principles and Application. Appl. Mach. Learn. Smart Data Anal., 71–96 (2019)

Q. V.Le, Building high-level features using large scale unsupervised learning, IEEE international conference on acoustics, Speech and signal processing, 8595–8598 (2013)

G.E. Hinton, S. Osindero, Y.W. Teh, A fast learning algorithm for deep belief nets. Neural Comput. 18, 1527–1554 (2006)

Article  MathSciNet  Google Scholar 

I. Goodfellow, Y. Bengio, A. Courville, D. Learning, (MIT Press: Cambridge, MA, USA, 2016)

Y. LeCun, L. Bottou, Y. Bengio, P.Haffner, Gradient-based learning applied to document recognition, Proc. IEEE. 86, 2278–2324 (1998)

Y. LeCun, Y. Bengio, G. Hinton, Deep Learn. Nat. 521, 436–444 (2015)

Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, L. Jackel, Handwritten digit recognition with a back-propagation network. Adv. Neural. Inf. Process. Syst. 2, 396–404 (1989)

Y. LeCun,, K. Kavukcuoglu, C. Farabet, Convolutional networks and applications in vision, Proceedings of IEEE international symposium on circuits and systems, 253–256 (2010)

V. Dumoulin, F. Visin, A guide to convolution arithmetic for deep learning, arXiv preprint arXiv:1603.07285 (2016)

V. Nair, G.E. Hinton, Rectified linear units improve restricted boltzmann machines, Proceedings of the 27th International Conference On Machine Learning (ICML-10), Haifa, Israel, 807–814 (2010)

B. Coppin, Artificial Intelligence Illuminated, (Jones & Bartlett Learning: Burlington, MA, USA, 2004)

M.K. Dutta, M. Kaur, R.K. Sarkar, Comparative performance analysis of fuzzy logic and particle swarm optimization (PSO) techniques for image quality improvement: with special emphasis to old and distorted folk paintings, OPTIK. 254, 168644 (2022)

J. Liu, T.Z. Huang, X.G. Lv, H. Xu, X.L. Zhao, Global quasi-minimal residual method for image restoration. Math. Probl. Eng. 943072, (2015)

L. Yang, S. Gu, C. Shen, X. Zhao, Q. Hu, Skeleton neural networks via low-rank guided Filter Pruning. IEEE Trans. Circuits Syst. Video Technol. 33, 7197–7211 (2023)

M. Kaur, R.K. Sarkar, M.K. Dutta, Investigation on quality enhancement of old and fragile artworks using non-linear filter and histogram equalization techniques, OPTIK 244, 167564 (2021)

M.K. Dutta, M. Kaur, R.K. Sarkar, Image Qual. Improv. old Distorted Artworks Using Fuzzy Log. Technique Optik 249, 168252 (2022)

留言 (0)

沒有登入
gif