Moghadam ARE, Moghadam MT, Hemadi M, et al. Oocyte quality and aging. JBRA Assist Reprod. 2022;26:105–22. https://doi.org/10.5935/1518-0557.20210026.
Article PubMed PubMed Central Google Scholar
Dunkley S, Mogessie B. Actin limits egg aneuploidies associated with female reproductive aging. Sci Adv. 2023;9:eadc9161. https://doi.org/10.1126/sciadv.adc9161.
Article PubMed PubMed Central Google Scholar
Ferreira AF, Soares M, Almeida-Santos T, et al. Aging and oocyte competence: a molecular cell perspective. WIREs Mech Dis. 2023;15:e1613. https://doi.org/10.1002/wsbm.1613.
Article CAS PubMed Google Scholar
Liang J, Huang F, Song Z, et al. Impact of NAD+ metabolism on ovarian aging. Immun Ageing. 2023;20:70. https://doi.org/10.1186/s12979-023-00398-w.
Article CAS PubMed PubMed Central Google Scholar
Wang X, Wang L, Xiang W. Mechanisms of ovarian aging in women: a review. J Ovarian Res. 2023;16:67. https://doi.org/10.1186/s13048-023-01151-z.
Article PubMed PubMed Central Google Scholar
Ntostis P, Iles D, Kokkali G, et al. The impact of maternal age on gene expression during the GV to MII transition in euploid human oocytes. Hum Reprod. 2021;37:80–92. https://doi.org/10.1093/humrep/deab226.
Article CAS PubMed PubMed Central Google Scholar
Charles S, Natarajan J. Integrated regulatory network based on lncRNA-miRNA-mRNA-TF reveals key genes and sub-networks associated with dilated cardiomyopathy. Comput Biol Chem. 2021;92:107500. https://doi.org/10.1016/j.compbiolchem.2021.107500.
Article CAS PubMed Google Scholar
Tong W, Wenze G, Libing H, et al. Exploration of shared TF-miRNA-mRNA and mRNA-RBP-pseudogene networks in type 2 diabetes mellitus and breast cancer. Front Immunol. 2022;13:915017. https://doi.org/10.3389/fimmu.2022.915017.
Article CAS PubMed PubMed Central Google Scholar
Li Y, Tang M, Zhang FJ, et al. Screening of ulcerative colitis biomarkers and potential pathways based on weighted gene co-expression network, machine learning and ceRNA hypothesis. Hereditas. 2022;159:42. https://doi.org/10.1186/s41065-022-00259-4.
Article CAS PubMed PubMed Central Google Scholar
Tang Q, Su Q, Wei L, et al. Identifying potential biomarkers for non-obstructive azoospermia using WGCNA and machine learning algorithms. Front Endocrinol. 2023;14:1108616. https://doi.org/10.3389/fendo.2023.1108616.
Liao Y, Liu Q, Xiao C, et al. Machine learning and experimental validation to construct a metastasis-related gene signature and ceRNA network for predicting osteosarcoma prognosis. J Orthop Surg Res. 2022;17:516. https://doi.org/10.1186/s13018-022-03386-w.
Article PubMed PubMed Central Google Scholar
Wan C, Li Y. Integrative analysis of mRNA-miRNA-TFs reveals the key regulatory connections involved in basal cell carcinoma. Arch Dermatol Res. 2020;312:133–43. https://doi.org/10.1007/s00403-019-02002-y.
Deng J, Fu F, Zhang F, et al. Construct ceRNA network and risk model of breast cancer using machine learning methods under the mechanism of cuproptosis. Diagnostics. 2023;13:1203. https://doi.org/10.3390/diagnostics13061203.
Article CAS PubMed PubMed Central Google Scholar
Zhang J-J, Liu X, Chen L, et al. Advanced maternal age alters expression of maternal effect genes that are essential for human oocyte quality. Aging. 2020;12:3950–61. https://doi.org/10.18632/aging.102864.
Article PubMed PubMed Central Google Scholar
Yuan L, Yin P, Yan H, et al. Single-cell transcriptome analysis of human oocyte ageing. J Cellular Molecular Medi. 2021;25:6289–303. https://doi.org/10.1111/jcmm.16594.
Llonch S, Barragán M, Nieto P, et al. Single human oocyte transcriptome analysis reveals distinct maturation stage-dependent pathways impacted by age. Aging Cell. 2021;20:e13360. https://doi.org/10.1111/acel.13360.
Article CAS PubMed PubMed Central Google Scholar
Karpiński EA, Skrzypczak AR. The significance of angling in stress reduction during the COVID-19 pandemic—environmental and socio-economic implications. IJERPH. 2022;19:4346. https://doi.org/10.3390/ijerph19074346.
Article CAS PubMed PubMed Central Google Scholar
Smyth GK, et al. limma: linear models for microarray data. In: Gentleman R, Carey VJ, Huber W, et al., editors. Bioinformatics and Computational Biology Solutions Using R and Bioconductor. New York: Springer-Verlag; 2005. p. 397–420.
Xu J, Zhou H, Cheng Y, et al. Identifying potential signatures for atherosclerosis in the context of predictive, preventive, and personalized medicine using integrative bioinformatics approaches and machine-learning strategies. EPMA J. 2022;13:433–49. https://doi.org/10.1007/s13167-022-00289-y.
Article PubMed PubMed Central Google Scholar
Harrow J, Frankish A, Gonzalez JM, et al. GENCODE: the reference human genome annotation for The ENCODE project. Genome Res. 2012;22:1760–74. https://doi.org/10.1101/gr.135350.111.
Article CAS PubMed PubMed Central Google Scholar
Hsu S-D, Lin F-M, Wu W-Y, et al. miRTarBase: a database curates experimentally validated microRNA–target interactions. Nucleic Acids Res. 2011;39:D163–9. https://doi.org/10.1093/nar/gkq1107.
Article CAS PubMed Google Scholar
Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504. https://doi.org/10.1101/gr.1239303.
Article CAS PubMed PubMed Central Google Scholar
Yu G, Wang L-G, Han Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS: J Integrative Biol. 2012;16:284–7. https://doi.org/10.1089/omi.2011.0118.
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559. https://doi.org/10.1186/1471-2105-9-559.
He R, Guan C, Zhao X, et al. Expression of immune related genes and possible regulatory mechanisms in different stages of non-alcoholic fatty liver disease. Front Immunol. 2024;15:1364442. https://doi.org/10.3389/fimmu.2024.1364442.
Article CAS PubMed PubMed Central Google Scholar
Huang M-L, Hung Y-H, Lee WM, et al. SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier. Scientific World J. 2014;2014:1–10. https://doi.org/10.1155/2014/795624.
Svetnik V, Liaw A, Tong C, et al. Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci. 2003;43:1947–58. https://doi.org/10.1021/ci034160g.
Article CAS PubMed Google Scholar
Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011;12:77. https://doi.org/10.1186/1471-2105-12-77.
Warde-Farley D, Donaldson SL, Comes O, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38:W214–20. https://doi.org/10.1093/nar/gkq537.
留言 (0)