Abd Wahab NZ, Ibrahim N. Efficacy of catharanthus roseus extract against dengue virus type 2 infection in vitro. Indian J Public Health Res Dev. 2020;11(1):1320–25.
Afandi A, Adib YL, Kee SC, Peng SL, Khai VL, Sanghiran RO, Othman S, Abdul NR, Yusof R, Han CH. Discovery of Dengue Virus Inhibitors. Curr Med Chem. 2020;27(30):4945–5036. https://doi.org/10.2174/0929867326666181204155336.
Abidin SA, Makpol S, Ahmad NS, Nik NA, Muhamad, and Wei Boon Yap. A Review on Unleashing the Potentials of Natural Products in Managing Dengue. Journal of Complementary Medicine Research. 2023;14(2):70–70.
Acosta EG, Bartenschlager R. The quest for host targets to combat dengue virus infections. Curr Opin Virol. 2016;20:47–54.
Afzal HS, Khan W, Nawaz S, Utra AM, Ahmad T. Investigation of the Diuretic Potential of Diosmetin, a Flavonoid from Citrus lemon in Sprague-Dawley Rat Model. Phytopharmacological Communications. 2022;2(02):115–26.
Ahmad N, Fazal H, Ayaz M, Abbasi BH, Mohammad I, Fazal L. Dengue fever treatment with Carica papaya leaves extracts. Asian Pac J Trop Biomed. 2011;1(4):330–3.
Article PubMed PubMed Central Google Scholar
Ahmed M, Khan ST. Implications of COVID-19 for Mental Health among Different Sections of the Society. Molecular Medicine Communications. 2022;2(02):157–72.
Ahmed S, Gul S, Gul H, Zia-Ul-Haq M, Ercisli S. Cyclooxygenase-2 inhibition improves antioxidative defense during experimental hypercholesterolemia. Bosn J Basic Med Sci. 2014;14(2):63.
Article CAS PubMed PubMed Central Google Scholar
Akshatha HS, Gurubasavaraj V, Pujar AK, Sethu MB, Singh M. Dengue structural proteins as antiviral drug targets: Current status in the drug discovery & development. Eur J Med Chem. 2021;221: 113527. https://doi.org/10.1016/j.ejmech.2021.113527.
Ali A, Habib ur Rehman, Muhammad Nisar, Shazia Rafique, Sadia Ali, Abrar Hussain, Muhammad Idrees, Sabeen Sabri, Hakeem Zada, and Shah Hussain. Seroepidemiology of dengue fever in Khyber Pakhtunkhawa, Pakistan. Int J Infect Dis. 2013;17(7):e518–23.
Ali NA, Dash KK, Pandey VK, Tripathi A, Mukarram SA, Harsányi E, Kovács B. Extraction and Encapsulation of Phytocompounds of Poniol Fruit via Co-Crystallization: Physicochemical Properties and Characterization. Molecules. 2023;28(12):4764.
Article CAS PubMed PubMed Central Google Scholar
Aliaga‐Samanez A, Romero D, Murray K, Cobos‐Mayo M, Segura M, Real R, Olivero J. Climate change is aggravating dengue and yellow fever transmission risk. Ecography. 2024;2024:e06942.
Anasir MI, Ramanathan B, Poh CL. Structure-Based Design of Antivirals against Envelope Glycoprotein of Dengue Virus. Viruses. 2020;12(4):367.
Article CAS PubMed PubMed Central Google Scholar
Arollado EC. Platelet augmentation activity of selected Philippine plants. Int J Pharm Phytopharm Res. 2014:3(2):121–3.
Aslam R, Saeed SA, Ahmed S, Connor JD. Lipoproteins inhibit platelet aggregation and arachidonic acid metabolism in experimental hypercholesterolaemia. Clin Exp Pharmacol Physiol. 2008;35:656–62.
Bácskay I, Nemes D, Fenyvesi F, Váradi J, Vasvári G, Fehér P, Vecsernyés M, Ujhelyi Z. Role of cytotoxicity experiments in pharmaceutical development. Cytotoxicity. 2018;8:131–46.
Barboza RS, Valente LMM, Wolff T, Assunção-Miranda I, Neris RLS, Guimarães-Andrade IP, Gomes M. Antiviral activity of Faramea hyacinthina and Faramea truncata leaves on dengue virus type-2 and their major compounds. Chem Biodivers. 2018;15(2): e1700393.
Basavannacharya C, Vasudevan SG. Suramin inhibits helicase activity of NS3 protein of dengue virus in a fluorescence-based high throughput assay format. Biochem Biophys Res Commun. 2014;453(3):539–44. https://doi.org/10.1016/j.bbrc.2014.09.113.
Article CAS PubMed Google Scholar
Bhatt P, Sabeena SP, Varma M, Arunkumar G. Current Understanding of the Pathogenesis of Dengue Virus Infection. Curr Microbiol. 2021;78(1):17–32. https://doi.org/10.1007/s00284-020-02284-w.
Article CAS PubMed Google Scholar
Biswal S, Borja-Tabora C, Vargas LM, Velásquez H, Alera MT, Sierra V, Rodriguez-Arenales EJ, Delia Yu, Pujitha Wickramasinghe V, Moreira ED. Efficacy of a tetravalent dengue vaccine in healthy children aged 4–16 years: a randomised, placebo-controlled, phase 3 trial. The Lancet. 2020;395(10234):1423–33.
Biswal S, Galvan JFM, Parra MM, Galan-Herrera JF, Rodriguez MBC, Bueno EPR, Brose M, Rauscher M, LeFevre I, Wallace D. Immunogenicity and safety of a tetravalent dengue vaccine in dengue-naïve adolescents in Mexico City. Rev Panam Salud Pública. 2021;45:e6.
Biswal S, Reynales H, Saez-Llorens X, Lopez P, Borja-Tabora C, Kosalaraksa P, Sirivichayakul C, Watanaveeradej V, Rivera L, Espinoza F. Efficacy of a tetravalent dengue vaccine in healthy children and adolescents. N Engl J Med. 2019;381(21):2009–19.
Article CAS PubMed Google Scholar
Blackley S, Kou Z, Chen H, Quinn M, Rose RC, Schlesinger JJ, Coppage M, Jin X. Primary human splenic macrophages, but not T or B cells, are the principal target cells for dengue virus infection in vitro. J Virol. 2007;81(24):13325–34.
Article CAS PubMed PubMed Central Google Scholar
Boonnak K, Slike BM, Burgess TH, Mason RM, Shuenn-Jue Wu, Sun P, Porter K, Rudiman IF, Yuwono D, Puthavathana P, Marovich MA. Role of Dendritic Cells in Antibody-Dependent Enhancement of Dengue Virus Infection. J Virol. 2008;82(8):3939–51. https://doi.org/10.1128/jvi.02484-07.
Article CAS PubMed PubMed Central Google Scholar
Botta L, Rivara M, Zuliani V, Radi M. Drug repurposing approaches to fight Dengue virus infection and related diseases. Front Biosci (Landmark Ed). 2018;23(6):997–1019.
Bourjot M, Leyssen P, Eydoux C, Guillemot JC, Canard B, Rasoanaivo P, Guéritte F, Litaudon M. Flacourtosides A-F, phenolic glycosides isolated from Flacourtia ramontchi. J Nat Prod. 2012;75(4):752–8.
Article CAS PubMed Google Scholar
Brooks A, Liang X, Zhang Y, Zhao C-X, Roberts MS, Wang H, Zhang L, Crawford DHG. Liver organoid as a 3D in vitro model for drug validation and toxicity assessment. Pharmacol Res. 2021;169: 105608.
Article CAS PubMed Google Scholar
Bundeesomchok K, Filly A, Rakotomanomana N, Panichayupakaranant P, Chemat F. Extraction of α-mangostin from Garcinia mangostana L. using alternative solvents: Computational predictive and experimental studies. LWT Food Sci Technol. 2016;65:297–303. https://doi.org/10.1016/j.lwt.2015.08.036.
Chan KW, Ki SW, Kavishna R, Alonso S, Vasudevan SG. Animal models for studying dengue pathogenesis and therapy. Antiviral Res. 2015;123:5–14.
Article CAS PubMed Google Scholar
Chao CH, Wei-Chueh Wu, Lai YC, Tsai PJ, Perng GC, Lin YS, Yeh TM. Dengue virus nonstructural protein 1 activates platelets via Toll-like receptor 4, leading to thrombocytopenia and hemorrhage. PLoS Pathog. 2019;15(4): e1007625.
Article CAS PubMed PubMed Central Google Scholar
Chappell JD, Dermody TS. Biology of viruses and viral diseases. In: Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. 2015. p. 1681.
Chen YL, Ghafar NA, Karuna R, Yilong Fu, Lim SP, Schul W, Feng Gu, Herve M, Yokohama F, Wang G, Cerny D, Fink K, Blasco F, Shi P-Y. Activation of Peripheral Blood Mononuclear Cells by Dengue Virus Infection Depotentiates Balapiravir. J Virol. 2014;88(3):1740–7. https://doi.org/10.1128/jvi.02841-13.
Article PubMed PubMed Central Google Scholar
Chiow KH, Phoon MC, Putti T, Tan BKH, Chow VT. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pac J Trop Med. 2016;9(1):1–7.
Article CAS PubMed Google Scholar
Di Li, Kerns EH, Ma XJ, Huang Y, Carter GT. Applications of high throughput microsomal stability assay in drug discovery. Comb Chem High Throughput Screening. 2008;11(6):469–76.
Durbin AP, Vargas MJ, Wanionek K, Hammond SN, Gordon A, Rocha C, Balmaseda A, Harris E. Phenotyping of peripheral blood mononuclear cells during acute dengue illness demonstrates infection and increased activation of monocytes in severe cases compared to classic dengue fever. Virology. 2008;376(2):429–35. https://doi.org/10.1016/j.virol.2008.03.028.
留言 (0)