The Relationship Between Length and Active Force for Submaximal Skeletal Muscle Contractions: a Review

Edman KA, Reggiani C. Redistribution of sarcomere length during isometric contraction of frog muscle fibres and its relation to tension creep. J Physiol [Internet]. 1984;351:169–98. https://doi.org/10.1113/jphysiol.1984.sp015240.

Article  CAS  PubMed  Google Scholar 

Lambert CR, Gladden LB, Stainsby WN. Length-dependent activation of in situ canine skeletal muscle. Am J Physiol Cell Physiol [Internet]. 1979;237:C38-42. https://doi.org/10.1152/ajpcell.1979.237.1.C38.

Article  CAS  Google Scholar 

Stennett R, Ogino K, Morgan JP, Burkhoff D. Length-dependent activation in intact ferret hearts: study of steady-state Ca(2+)-stress-strain interrelations. Am J Physiol Heart Circ Physiol [Internet]. 1996;270:H1940–50. https://doi.org/10.1152/ajpheart.1996.270.6.H1940.

Article  CAS  Google Scholar 

Rassier DE, MacIntosh BR, Herzog W. Length dependence of active force production in skeletal muscle. J Appl Physiol [Internet]. 1999;86:1445–57. https://doi.org/10.1152/jappl.1999.86.5.1445.

Article  CAS  PubMed  Google Scholar 

Hessel AL, Joumaa V, Eck S, Herzog W, Nishikawa KC. Optimal length, calcium sensitivity and twitch characteristics of skeletal muscles from mdm mice with a deletion in N2A titin. J Exp Biol. 2019. https://doi.org/10.1242/jeb.200840.

Article  PubMed  Google Scholar 

MacDougall KB, Kristensen AM, MacIntosh BR. Additional in-series compliance does not affect the length dependence of activation in rat medial gastrocnemius. Exp Physiol. 2020;105:1907–17.

Article  CAS  PubMed  Google Scholar 

Rack PMH, Westbury DR. The effects of length and stimulus rate on tension in the isometric cat soleus muscle. J Physiol [Internet]. 1969;204:443–60. https://doi.org/10.1113/jphysiol.1969.sp008923.

Article  CAS  PubMed  Google Scholar 

Stephenson DG, Wendt IR. Length dependence of changes in sarcoplasmic calcium concentration and myofibrillar calcium sensitivity in striated muscle fibres. J Muscle Res Cell Motil [Internet]. 1984;5:243–72. https://doi.org/10.1007/BF00713107.

Article  CAS  PubMed  Google Scholar 

Holt NC, Azizi E. The effect of activation level on muscle function during locomotion: are optimal lengths and velocities always used? Proc R Soc B Biol Sci. 2016;283:20152832.

Article  Google Scholar 

Holt NC, Azizi E. What drives activation-dependent shifts in the force–length curve? Biol Lett [Internet]. 2014;10:20140651. https://doi.org/10.1098/rsbl.2014.0651.

Article  PubMed  Google Scholar 

Holt NC, Williams CD. Can strain dependent inhibition of cross-bridge binding explain shifts in optimum muscle length? Integr Comp Biol. 2018;58:174–85.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vaz MA, de la Rocha FC, Leonard T, Herzog W. The force-length relationship of the cat soleus muscle. Muscles Ligaments Tendons J [Internet]. 2012;2:79–84.

PubMed  Google Scholar 

Bohm S, Schroll A, Mersmann F, Arampatzis A, Bohm S. The journal of physiology assessment and modelling of the activation-dependent shift in optimal length of the human soleus muscle in vivo key points. J Physiol [Internet]. 2024;602:1371–84. https://doi.org/10.1113/JP285986/support-information-section.

Article  CAS  PubMed  Google Scholar 

de Brito FH, Herzog W. Vastus lateralis maximum force-generating potential occurs at optimal fascicle length regardless of activation level. Eur J Appl Physiol [Internet]. 2016;116:1267–77. https://doi.org/10.1007/s00421-016-3381-3.

Article  Google Scholar 

de Tombe PP, Mateja RD, Tachampa K, Ait Mou Y, Farman GP, Irving TC. Myofilament length dependent activation. J Mol Cell Cardiol [Internet]. 2010;48:851–8.

Article  PubMed  Google Scholar 

MacIntosh BR. Role of calcium sensitivity modulation in skeletal muscle performance. Physiology [Internet]. 2003;18:222–5. https://doi.org/10.1152/nips.01456.2003.

Article  CAS  Google Scholar 

MacIntosh BR. Recent developments in understanding the length dependence of contractile response of skeletal muscle. Eur J Appl Physiol [Internet]. 2017;117:1059–71. https://doi.org/10.1007/s00421-017-3591-3.

Article  CAS  PubMed  Google Scholar 

Cecchi G, Bagni MA, Griffiths PJ, Ashley CC, Maeda Y. Detection of radial crossbridge force by lattice spacing changes in intact single muscle fibers. Science (1979) [Internet]. 1990;250:1409–11. https://doi.org/10.1126/science.2255911.

Article  CAS  Google Scholar 

Rockenfeller R, Günther M, Hooper SL. Muscle active force-length curve explained by an electrophysical model of interfilament spacing. Biophys J. 2022;121:1823–55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Blix M. Die Länge und die Spannung des Muskels. Skand Arch Physiol. 1891;3:295–318.

Article  Google Scholar 

Blix M. Die lange und die spannung des muskels. Skand Arch Physiol. 1894;5:173–206.

Article  Google Scholar 

Blix M. Die lange und die spannung des muskels. Skandinavische Archiv fur Physiologie. Company of Biologists Ltd; 1892.

Huxley H, Hanson J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature [Internet]. 1954;173:973–6.

Article  CAS  PubMed  Google Scholar 

Huxley AF, Niedergerke R. Structural changes in muscle during contraction: interference microscopy of living muscle fibres. Nature [Internet]. 1954;173:971–3.

Article  CAS  PubMed  Google Scholar 

Huxley AF. Muscle structure and theories of contraction. Prog Biophys Biophys Chem [Internet]. 1957;7:255–318.

Article  CAS  PubMed  Google Scholar 

Gordon AM, Huxley AF, Julian FJ. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol [Internet]. 1966;184:170–92. https://doi.org/10.1113/jphysiol.1966.sp007909.

Article  CAS  PubMed  Google Scholar 

Bagni MA, Cecchi G, Colomo F, Tesi C. Plateau and descending limb of the sarcomere length-tension relation in short length-clamped segments of frog muscle fibres. J Physiol [Internet]. 1988;401:581–95. https://doi.org/10.1113/jphysiol.1988.sp017181.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lieber RL, Loren GJ, Friden J. In vivo measurement of human wrist extensor muscle sarcomere length changes. J Neurophysiol [Internet]. 1994;71:874–81. https://doi.org/10.1152/jn.1994.71.3.874.

Article  CAS  PubMed  Google Scholar 

Walker SM, Schrodt GR. I segment lengths and thin filament periods in skeletal muscle fibers of the rhesus monkey and the human. Anat Rec [Internet]. 1974;178:63–81. https://doi.org/10.1002/ar.1091780107.

Article  CAS  PubMed  Google Scholar 

Allen JD, Moss RL. Factors influencing the ascending limb of the sarcomere length-tension relationship in rabbit skinned muscle fibres. J Physiol [Internet]. 1987;390:119–36. https://doi.org/10.1113/jphysiol.1987.sp016689.

Article  CAS  PubMed  Google Scholar 

Bagni MA, Cecchi G, Colomo F. Myofilament spacing and force generation in intact frog muscle fibres. J Physiol [Internet]. 1990;430:61–75. https://doi.org/10.1113/jphysiol.1990.sp018281.

Article  CAS  PubMed  Google Scholar 

MacNaughton MB, MacIntosh BR. Reports of the length dependence of fatigue are greatly exaggerated. J Appl Physiol [Internet]. 2006;101:23–9. https://doi.org/10.1152/japplphysiol.01373.2005.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif