Edman KA, Reggiani C. Redistribution of sarcomere length during isometric contraction of frog muscle fibres and its relation to tension creep. J Physiol [Internet]. 1984;351:169–98. https://doi.org/10.1113/jphysiol.1984.sp015240.
Article CAS PubMed Google Scholar
Lambert CR, Gladden LB, Stainsby WN. Length-dependent activation of in situ canine skeletal muscle. Am J Physiol Cell Physiol [Internet]. 1979;237:C38-42. https://doi.org/10.1152/ajpcell.1979.237.1.C38.
Stennett R, Ogino K, Morgan JP, Burkhoff D. Length-dependent activation in intact ferret hearts: study of steady-state Ca(2+)-stress-strain interrelations. Am J Physiol Heart Circ Physiol [Internet]. 1996;270:H1940–50. https://doi.org/10.1152/ajpheart.1996.270.6.H1940.
Rassier DE, MacIntosh BR, Herzog W. Length dependence of active force production in skeletal muscle. J Appl Physiol [Internet]. 1999;86:1445–57. https://doi.org/10.1152/jappl.1999.86.5.1445.
Article CAS PubMed Google Scholar
Hessel AL, Joumaa V, Eck S, Herzog W, Nishikawa KC. Optimal length, calcium sensitivity and twitch characteristics of skeletal muscles from mdm mice with a deletion in N2A titin. J Exp Biol. 2019. https://doi.org/10.1242/jeb.200840.
MacDougall KB, Kristensen AM, MacIntosh BR. Additional in-series compliance does not affect the length dependence of activation in rat medial gastrocnemius. Exp Physiol. 2020;105:1907–17.
Article CAS PubMed Google Scholar
Rack PMH, Westbury DR. The effects of length and stimulus rate on tension in the isometric cat soleus muscle. J Physiol [Internet]. 1969;204:443–60. https://doi.org/10.1113/jphysiol.1969.sp008923.
Article CAS PubMed Google Scholar
Stephenson DG, Wendt IR. Length dependence of changes in sarcoplasmic calcium concentration and myofibrillar calcium sensitivity in striated muscle fibres. J Muscle Res Cell Motil [Internet]. 1984;5:243–72. https://doi.org/10.1007/BF00713107.
Article CAS PubMed Google Scholar
Holt NC, Azizi E. The effect of activation level on muscle function during locomotion: are optimal lengths and velocities always used? Proc R Soc B Biol Sci. 2016;283:20152832.
Holt NC, Azizi E. What drives activation-dependent shifts in the force–length curve? Biol Lett [Internet]. 2014;10:20140651. https://doi.org/10.1098/rsbl.2014.0651.
Holt NC, Williams CD. Can strain dependent inhibition of cross-bridge binding explain shifts in optimum muscle length? Integr Comp Biol. 2018;58:174–85.
Article CAS PubMed PubMed Central Google Scholar
Vaz MA, de la Rocha FC, Leonard T, Herzog W. The force-length relationship of the cat soleus muscle. Muscles Ligaments Tendons J [Internet]. 2012;2:79–84.
Bohm S, Schroll A, Mersmann F, Arampatzis A, Bohm S. The journal of physiology assessment and modelling of the activation-dependent shift in optimal length of the human soleus muscle in vivo key points. J Physiol [Internet]. 2024;602:1371–84. https://doi.org/10.1113/JP285986/support-information-section.
Article CAS PubMed Google Scholar
de Brito FH, Herzog W. Vastus lateralis maximum force-generating potential occurs at optimal fascicle length regardless of activation level. Eur J Appl Physiol [Internet]. 2016;116:1267–77. https://doi.org/10.1007/s00421-016-3381-3.
de Tombe PP, Mateja RD, Tachampa K, Ait Mou Y, Farman GP, Irving TC. Myofilament length dependent activation. J Mol Cell Cardiol [Internet]. 2010;48:851–8.
MacIntosh BR. Role of calcium sensitivity modulation in skeletal muscle performance. Physiology [Internet]. 2003;18:222–5. https://doi.org/10.1152/nips.01456.2003.
MacIntosh BR. Recent developments in understanding the length dependence of contractile response of skeletal muscle. Eur J Appl Physiol [Internet]. 2017;117:1059–71. https://doi.org/10.1007/s00421-017-3591-3.
Article CAS PubMed Google Scholar
Cecchi G, Bagni MA, Griffiths PJ, Ashley CC, Maeda Y. Detection of radial crossbridge force by lattice spacing changes in intact single muscle fibers. Science (1979) [Internet]. 1990;250:1409–11. https://doi.org/10.1126/science.2255911.
Rockenfeller R, Günther M, Hooper SL. Muscle active force-length curve explained by an electrophysical model of interfilament spacing. Biophys J. 2022;121:1823–55.
Article CAS PubMed PubMed Central Google Scholar
Blix M. Die Länge und die Spannung des Muskels. Skand Arch Physiol. 1891;3:295–318.
Blix M. Die lange und die spannung des muskels. Skand Arch Physiol. 1894;5:173–206.
Blix M. Die lange und die spannung des muskels. Skandinavische Archiv fur Physiologie. Company of Biologists Ltd; 1892.
Huxley H, Hanson J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature [Internet]. 1954;173:973–6.
Article CAS PubMed Google Scholar
Huxley AF, Niedergerke R. Structural changes in muscle during contraction: interference microscopy of living muscle fibres. Nature [Internet]. 1954;173:971–3.
Article CAS PubMed Google Scholar
Huxley AF. Muscle structure and theories of contraction. Prog Biophys Biophys Chem [Internet]. 1957;7:255–318.
Article CAS PubMed Google Scholar
Gordon AM, Huxley AF, Julian FJ. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol [Internet]. 1966;184:170–92. https://doi.org/10.1113/jphysiol.1966.sp007909.
Article CAS PubMed Google Scholar
Bagni MA, Cecchi G, Colomo F, Tesi C. Plateau and descending limb of the sarcomere length-tension relation in short length-clamped segments of frog muscle fibres. J Physiol [Internet]. 1988;401:581–95. https://doi.org/10.1113/jphysiol.1988.sp017181.
Article CAS PubMed PubMed Central Google Scholar
Lieber RL, Loren GJ, Friden J. In vivo measurement of human wrist extensor muscle sarcomere length changes. J Neurophysiol [Internet]. 1994;71:874–81. https://doi.org/10.1152/jn.1994.71.3.874.
Article CAS PubMed Google Scholar
Walker SM, Schrodt GR. I segment lengths and thin filament periods in skeletal muscle fibers of the rhesus monkey and the human. Anat Rec [Internet]. 1974;178:63–81. https://doi.org/10.1002/ar.1091780107.
Article CAS PubMed Google Scholar
Allen JD, Moss RL. Factors influencing the ascending limb of the sarcomere length-tension relationship in rabbit skinned muscle fibres. J Physiol [Internet]. 1987;390:119–36. https://doi.org/10.1113/jphysiol.1987.sp016689.
Article CAS PubMed Google Scholar
Bagni MA, Cecchi G, Colomo F. Myofilament spacing and force generation in intact frog muscle fibres. J Physiol [Internet]. 1990;430:61–75. https://doi.org/10.1113/jphysiol.1990.sp018281.
Article CAS PubMed Google Scholar
MacNaughton MB, MacIntosh BR. Reports of the length dependence of fatigue are greatly exaggerated. J Appl Physiol [Internet]. 2006;101:23–9. https://doi.org/10.1152/japplphysiol.01373.2005.
留言 (0)