Hybrid network with difficult–easy learning for concealed object detection in imbalanced terahertz image dataset

Sun, P., Liu, T., Chen, X., et al.: Multi-source aggregation transformer for concealed object detection in millimeter-wave images. IEEE T. Circ. Syst. Vid. 32(9), 6148–6159 (2022)

Article  Google Scholar 

Helal, S., Sarieddeen, H., Dahrouj, H., et al.: Signal processing and machine learning techniques for terahertz sensing: an overview. IEEE Signal Proc. Mag. 39(5), 42–62 (2022)

Article  Google Scholar 

Liu, Y., Xu, F., Pu, Z., et al.: AC-SDBSCAN: Toward concealed object detection of passive terahertz images. IET Image Process. 16(3), 839–851 (2022)

Article  ADS  Google Scholar 

Zhang, Z., Lu, Y., Lv, C., et al.: Restoration of integrated circuit terahertz image based on wavelet denoising technique and the point spread function model. Opt. Laser. Eng. 138, 106413 (2021)

Article  Google Scholar 

Mao, Q., Zhu, Y., Liu, J.: Terahertz image enhancing based on the physical model and multiscale retinex algorithm. Appl. Optics 61(28), 8382–8388 (2022)

Article  ADS  Google Scholar 

Wan, M., Healy, J.J., Sheridan, J.T.: Terahertz phase imaging and biomedical applications. Opt. Laser Technol. 122, 105859 (2020)

Article  Google Scholar 

Yeom, S., Lee, D., Son, J.: Shape feature analysis of concealed objects with passive millimeter wave imaging. Prog. Electromagn. Res. Lett. 57, 131–137 (2015)

Article  Google Scholar 

Yu, W., Chen, X., Wu, L.: Segmentation of concealed objects in passive millimeter-wave images based on the Gaussian mixture model. J Infrared, Millim., Terahertz Waves 36(4), 400–421 (2015)

Article  Google Scholar 

Li, R., Li, C., Li, H., et al.: Study of automatic detection of concealed targets in passive terahertz images for intelligent security screening. IEEE T. Thz. Sci. Techn. 9(2), 165–176 (2019)

Article  Google Scholar 

Işiker, H., Ünal, İ, Tekbaş, M., et al.: An auto-classification procedure for concealed weapon detection in millimeter-wave radiometric imaging systems. Microw. Opt. Techn. Let. 60(3), 583–594 (2018)

Article  Google Scholar 

Işıker, H., Özdemir, C.: A multi-thresholding method based on Otsu’s algorithm for the detection of concealed threats in passive millimeter-wave images. Frequenz 73(5–6), 179–187 (2019)

Article  ADS  Google Scholar 

Tang, F., Gui, L., Liu, J., et al.: Metal target detection method using passive millimeter-wave polarimetric imagery. Opt. Express 28(9), 13336–13351 (2020)

Article  ADS  Google Scholar 

Costa, F.B., Machado, M.A., Bonfait, G.J., et al.: Continuous wave terahertz imaging for NDT: Fundamentals and experimental validation. Measurement 172, 108904 (2021)

Article  Google Scholar 

X. Wang, Z. Zhang, Y. Xu, et al., "Real-time Minor Defect Recognition of Pseudo-Terahertz Images via the Improved YOLO Network," In Proc. Int. Conf. Sens., Meas. Data Anal. Era Artif. Intell (IEEE 2021), pp. 1–6.

Wang, X., Zhang, Z., Xu, Y., et al.: Real-time terahertz characterization of minor defects by the YOLOX-MSA network. IEEE T. Instrum. Meas. 71, 1–10 (2022)

Article  Google Scholar 

Cheng, L., Ji, Y., Li, C., et al.: Improved SSD network for fast concealed object detection and recognition in passive terahertz security images. Sci. Rep UK 12(1), 1–16 (2022)

ADS  Google Scholar 

T. Lin, P. Goyal, R. Girshick, et al., "Focal loss for dense object detection," in international conference on computer vision (IEEE 2017), pp. 2980–2988.

Liang, D., Pan, J., Yu, Y., et al.: Concealed object segmentation in terahertz imaging via adversarial learning. Optik 185, 1104–1114 (2019)

Article  Google Scholar 

Xu, F., Huang, X., Wu, Q., et al.: YOLO-MSFG: toward real-time detection of concealed objects in passive terahertz images. IEEE Sens. J. 22(1), 520–534 (2021)

Article  ADS  Google Scholar 

Yang, H., Zhang, D., Hu, A., et al.: Transformer-based anchor-free detection of concealed objects in passive millimeter wave images. IEEE T. Instrum. Meas. 71, 1–16 (2022)

Article  Google Scholar 

Liang, X., Zhang, J., Zhuo, L., et al.: Small object detection in unmanned aerial vehicle images using feature fusion and scaling-based single shot detector with spatial context analysis. IEEE T. Circ. Syst. Vid. 30(6), 1758–1770 (2020)

Article  Google Scholar 

Fan, L., Wang, H., Yang, Q., et al.: Fast detection and reconstruction of tank barrels based on component prior and deep neural network in the terahertz regime. IEEE T. Geosci. Remote 60, 1–17 (2022)

Google Scholar 

Wan, H., Chen, J., Huang, Z., et al.: AFSar: an anchor-free SAR target detection algorithm based on multiscale enhancement representation learning. IEEE T. Geosci. Remote 60, 1–14 (2022)

Google Scholar 

Liang, D., Xue, F., Li, L.: Active terahertz imaging dataset for concealed object detection. (2021). arXiv preprint arXiv:2105.03677. Accessed 8 Jun 2023

Jocher, G. J., et al.: Ultralytics/YOLOv5: V6.0. https://github.com/ultralytics/yolov5. Accessed 1 Feb 2023

Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. (2020). arXiv preprint arXiv:2010.11929. Accessed 10 Jan 2023

Y. Cao, J. Xu, S. Lin, et al., "GCNet: Non-local networks meet squeeze-excitation networks and beyond," (2019).

Li, X., Wang, W., Wu, L., et al.: Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection. Adv. Neural. Inf. Process. Syst. 33, 21002–21012 (2020)

Google Scholar 

Zhang, Y., Ren, W., Zhang, Z., et al.: Focal and efficient IOU loss for accurate bounding box regression. Neurocomputing 506, 146–157 (2022)

Article  Google Scholar 

Liu, T., Zhao, Y., Wei, Y., et al.: Concealed object detection for activate millimeter wave image. IEEE T. Ind. Electron. 66(12), 9909–9917 (2019)

Article  Google Scholar 

Wang, X., Gou, S., Li, J., et al.: Self-paced feature attention fusion network for concealed object detection in millimeter-wave image. IEEE T. Circ. Syst. Vid. 32(1), 224–239 (2022)

Article  Google Scholar 

Wang, C., Shi, J., Tao, C., et al.: Multitype label noise modeling and uncertainty-weighted label correction for concealed object detection. IEEE T. Instrum. Meas. 72, 1–12 (2023)

Google Scholar 

Gou, S., Wang, X., Mao, S., et al.: Weakly-supervised semantic feature refinement network for mmw concealed object detection. IEEE T. Circ. Syst. Vid. 33(3), 1363–1373 (2023)

Article  Google Scholar 

Yang, X., Guo, H., Wang, N., et al.: A novel symmetry driven siamese network for THz concealed object verification. IEEE T. Image Process. 29, 5447–5456 (2020)

Article  ADS  Google Scholar 

Zhang, B., Wang, B., Wu, X., et al.: Domain adaptive detection system for concealed objects using millimeter wave images. Neural Comput. Appl. 33, 11573–11588 (2021)

Article  Google Scholar 

Wang, C., Shi, J., Zhou, Z., et al.: Concealed object detection for millimeter-wave images with normalized accumulation map. IEEE Sens. J. 21(5), 6468–6475 (2020)

Article  ADS  Google Scholar 

Yang, X., Wei, Z., Wang, N., et al.: A novel deformable body partition model for MMW suspicious object detection and dynamic tracking. Signal Process. 174, 107627 (2020)

Article  Google Scholar 

A. Shrivastava, A. Gupta, and R. Girshick, "Training Region-Based Object Detectors with Online Hard Example Mining," In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 761–769.

T. Y. Lin, P. Goyal, R. Girshick, et al., "Focal Loss for Dense Object Detection," In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017), pp. 2999–3007.

Y. Cui, M. Jia, T. Lin, et al., "Class-Balanced Loss Based on Effective Number of Samples," In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019), pp. 9260–9269.

Li, B., Liu, Y., Wang, X.: Gradient Harmonized Single-Stage Detector. Proc. AAAI Conf. Artif. Intell. 33(01), 8577–8584 (2019)

Google Scholar 

Y. Cao, K. Chen, C. C, Loy, et al., "Prime Sample Attention in Object Detection," In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020), pp. 11580–11588.

Chen, K., Lin, W., Li, J., et al.: AP-loss for accurate one-stage object detection. IEEE T. Pattern Anal. 43(11), 3782–3798 (2021)

Article  Google Scholar 

J. Hu, L. Shen, and G. Sun, "Squeeze-and-excitation networks," In IEEE conference on computer vision and pattern recognition (2018), pp. 7132–7141.

S. Woo, J. Park, J. Lee, et al., "CBAM: Convolutional block attention module," In Proceedings of the European conference on computer vision (ECCV) (2018), pp. 3–19.

Song, K., Y. H, and Z. Yin,: Multi-scale attention deep neural network for fast accurate object detection. IEEE T. Circ. Syst. Vid. 29(10), 2972–2985 (2019)

Article  Google Scholar 

A. Dosovitskiy, L. Beyer, A. Kolesnikov, et al., “An image is worth 16×16 words: Transformers for image recognition at scale,” in Proc. 9th Int. Conf. Learn. Represent. (ICLR), May 2021, pp. 1–16.

Carion, N., Massa, F., Synnaeve, G., et al.: End-to-end object detection with transformers, pp. 213–229. Springer (2020)

Google Scholar 

Dai, Y., Liu, W., Wang, H., et al.: Yolo-former: Marrying yolo and transformer for foreign object detection. IEEE T. Instrum. Meas. 71, 1–14 (2022)

Google Scholar 

Elfwing, S., Uchibe, E., Doya, K.: Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Netw. 107, 3–11 (2018)

Article  Google Scholar 

S. Liu, L. Qi, and H. Qin, "Path Aggregation Network for Instance Segmentation," In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018), pp. 8759–8768.

A. Neubeck, and L. Van Gool, "Efficient Non-Maximum Suppression," in 18th International Conference on Pattern Recognition (ICPR'06)(2006), pp. 850–855.

T. Lin, P. Dollár, R. Girshick, et al., "Feature Pyramid Networks for Object Detection," In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 936–944.

S. Wang, Z. Ye and Y. Yang. “Real-time dangerous objects detection in millimeter wave images.” International Conference on Digital Image Processing (2018).

A. Vaswani, N. M. Shazeer, N. Parmar, et al., "Attention is All you Need," in NIPS (2017).

Zheng, Z., Wang, P., Ren, D., et al.: Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE T. Cybern. 52(8), 8574–8586 (2022)

Article  Google Scholar 

C. Wang, A. Bochkovskiy, and H. Liao, "Scaled-YOLOv4: Scaling Cross Stage Partial Network," In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021), pp. 13024–13033.

C. Feng, Y. Zhong, Y. Gao et al., "TOOD: Task-aligned One-stage Object Detection," In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV) (2021), pp. 3490–3499.

Ge, Z., Liu, S., Wang, F., et al.: Yolox: Exceeding yolo series in 2021. (2021). arXiv:2107.08430. Accessed 16 Jul 2023

Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE T. Pattern Anal. 39(6), 1137–1149 (2017)

Article  Google Scholar 

Li, Z., Zhou, F.: FSSD: Feature fusion single shot multibox detector. (2017). https://arxiv.org/abs/1712.00960. Accessed 20 Jan 2024

留言 (0)

沒有登入
gif