Sun, P., Liu, T., Chen, X., et al.: Multi-source aggregation transformer for concealed object detection in millimeter-wave images. IEEE T. Circ. Syst. Vid. 32(9), 6148–6159 (2022)
Helal, S., Sarieddeen, H., Dahrouj, H., et al.: Signal processing and machine learning techniques for terahertz sensing: an overview. IEEE Signal Proc. Mag. 39(5), 42–62 (2022)
Liu, Y., Xu, F., Pu, Z., et al.: AC-SDBSCAN: Toward concealed object detection of passive terahertz images. IET Image Process. 16(3), 839–851 (2022)
Zhang, Z., Lu, Y., Lv, C., et al.: Restoration of integrated circuit terahertz image based on wavelet denoising technique and the point spread function model. Opt. Laser. Eng. 138, 106413 (2021)
Mao, Q., Zhu, Y., Liu, J.: Terahertz image enhancing based on the physical model and multiscale retinex algorithm. Appl. Optics 61(28), 8382–8388 (2022)
Wan, M., Healy, J.J., Sheridan, J.T.: Terahertz phase imaging and biomedical applications. Opt. Laser Technol. 122, 105859 (2020)
Yeom, S., Lee, D., Son, J.: Shape feature analysis of concealed objects with passive millimeter wave imaging. Prog. Electromagn. Res. Lett. 57, 131–137 (2015)
Yu, W., Chen, X., Wu, L.: Segmentation of concealed objects in passive millimeter-wave images based on the Gaussian mixture model. J Infrared, Millim., Terahertz Waves 36(4), 400–421 (2015)
Li, R., Li, C., Li, H., et al.: Study of automatic detection of concealed targets in passive terahertz images for intelligent security screening. IEEE T. Thz. Sci. Techn. 9(2), 165–176 (2019)
Işiker, H., Ünal, İ, Tekbaş, M., et al.: An auto-classification procedure for concealed weapon detection in millimeter-wave radiometric imaging systems. Microw. Opt. Techn. Let. 60(3), 583–594 (2018)
Işıker, H., Özdemir, C.: A multi-thresholding method based on Otsu’s algorithm for the detection of concealed threats in passive millimeter-wave images. Frequenz 73(5–6), 179–187 (2019)
Tang, F., Gui, L., Liu, J., et al.: Metal target detection method using passive millimeter-wave polarimetric imagery. Opt. Express 28(9), 13336–13351 (2020)
Costa, F.B., Machado, M.A., Bonfait, G.J., et al.: Continuous wave terahertz imaging for NDT: Fundamentals and experimental validation. Measurement 172, 108904 (2021)
X. Wang, Z. Zhang, Y. Xu, et al., "Real-time Minor Defect Recognition of Pseudo-Terahertz Images via the Improved YOLO Network," In Proc. Int. Conf. Sens., Meas. Data Anal. Era Artif. Intell (IEEE 2021), pp. 1–6.
Wang, X., Zhang, Z., Xu, Y., et al.: Real-time terahertz characterization of minor defects by the YOLOX-MSA network. IEEE T. Instrum. Meas. 71, 1–10 (2022)
Cheng, L., Ji, Y., Li, C., et al.: Improved SSD network for fast concealed object detection and recognition in passive terahertz security images. Sci. Rep UK 12(1), 1–16 (2022)
T. Lin, P. Goyal, R. Girshick, et al., "Focal loss for dense object detection," in international conference on computer vision (IEEE 2017), pp. 2980–2988.
Liang, D., Pan, J., Yu, Y., et al.: Concealed object segmentation in terahertz imaging via adversarial learning. Optik 185, 1104–1114 (2019)
Xu, F., Huang, X., Wu, Q., et al.: YOLO-MSFG: toward real-time detection of concealed objects in passive terahertz images. IEEE Sens. J. 22(1), 520–534 (2021)
Yang, H., Zhang, D., Hu, A., et al.: Transformer-based anchor-free detection of concealed objects in passive millimeter wave images. IEEE T. Instrum. Meas. 71, 1–16 (2022)
Liang, X., Zhang, J., Zhuo, L., et al.: Small object detection in unmanned aerial vehicle images using feature fusion and scaling-based single shot detector with spatial context analysis. IEEE T. Circ. Syst. Vid. 30(6), 1758–1770 (2020)
Fan, L., Wang, H., Yang, Q., et al.: Fast detection and reconstruction of tank barrels based on component prior and deep neural network in the terahertz regime. IEEE T. Geosci. Remote 60, 1–17 (2022)
Wan, H., Chen, J., Huang, Z., et al.: AFSar: an anchor-free SAR target detection algorithm based on multiscale enhancement representation learning. IEEE T. Geosci. Remote 60, 1–14 (2022)
Liang, D., Xue, F., Li, L.: Active terahertz imaging dataset for concealed object detection. (2021). arXiv preprint arXiv:2105.03677. Accessed 8 Jun 2023
Jocher, G. J., et al.: Ultralytics/YOLOv5: V6.0. https://github.com/ultralytics/yolov5. Accessed 1 Feb 2023
Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. (2020). arXiv preprint arXiv:2010.11929. Accessed 10 Jan 2023
Y. Cao, J. Xu, S. Lin, et al., "GCNet: Non-local networks meet squeeze-excitation networks and beyond," (2019).
Li, X., Wang, W., Wu, L., et al.: Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection. Adv. Neural. Inf. Process. Syst. 33, 21002–21012 (2020)
Zhang, Y., Ren, W., Zhang, Z., et al.: Focal and efficient IOU loss for accurate bounding box regression. Neurocomputing 506, 146–157 (2022)
Liu, T., Zhao, Y., Wei, Y., et al.: Concealed object detection for activate millimeter wave image. IEEE T. Ind. Electron. 66(12), 9909–9917 (2019)
Wang, X., Gou, S., Li, J., et al.: Self-paced feature attention fusion network for concealed object detection in millimeter-wave image. IEEE T. Circ. Syst. Vid. 32(1), 224–239 (2022)
Wang, C., Shi, J., Tao, C., et al.: Multitype label noise modeling and uncertainty-weighted label correction for concealed object detection. IEEE T. Instrum. Meas. 72, 1–12 (2023)
Gou, S., Wang, X., Mao, S., et al.: Weakly-supervised semantic feature refinement network for mmw concealed object detection. IEEE T. Circ. Syst. Vid. 33(3), 1363–1373 (2023)
Yang, X., Guo, H., Wang, N., et al.: A novel symmetry driven siamese network for THz concealed object verification. IEEE T. Image Process. 29, 5447–5456 (2020)
Zhang, B., Wang, B., Wu, X., et al.: Domain adaptive detection system for concealed objects using millimeter wave images. Neural Comput. Appl. 33, 11573–11588 (2021)
Wang, C., Shi, J., Zhou, Z., et al.: Concealed object detection for millimeter-wave images with normalized accumulation map. IEEE Sens. J. 21(5), 6468–6475 (2020)
Yang, X., Wei, Z., Wang, N., et al.: A novel deformable body partition model for MMW suspicious object detection and dynamic tracking. Signal Process. 174, 107627 (2020)
A. Shrivastava, A. Gupta, and R. Girshick, "Training Region-Based Object Detectors with Online Hard Example Mining," In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 761–769.
T. Y. Lin, P. Goyal, R. Girshick, et al., "Focal Loss for Dense Object Detection," In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017), pp. 2999–3007.
Y. Cui, M. Jia, T. Lin, et al., "Class-Balanced Loss Based on Effective Number of Samples," In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019), pp. 9260–9269.
Li, B., Liu, Y., Wang, X.: Gradient Harmonized Single-Stage Detector. Proc. AAAI Conf. Artif. Intell. 33(01), 8577–8584 (2019)
Y. Cao, K. Chen, C. C, Loy, et al., "Prime Sample Attention in Object Detection," In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020), pp. 11580–11588.
Chen, K., Lin, W., Li, J., et al.: AP-loss for accurate one-stage object detection. IEEE T. Pattern Anal. 43(11), 3782–3798 (2021)
J. Hu, L. Shen, and G. Sun, "Squeeze-and-excitation networks," In IEEE conference on computer vision and pattern recognition (2018), pp. 7132–7141.
S. Woo, J. Park, J. Lee, et al., "CBAM: Convolutional block attention module," In Proceedings of the European conference on computer vision (ECCV) (2018), pp. 3–19.
Song, K., Y. H, and Z. Yin,: Multi-scale attention deep neural network for fast accurate object detection. IEEE T. Circ. Syst. Vid. 29(10), 2972–2985 (2019)
A. Dosovitskiy, L. Beyer, A. Kolesnikov, et al., “An image is worth 16×16 words: Transformers for image recognition at scale,” in Proc. 9th Int. Conf. Learn. Represent. (ICLR), May 2021, pp. 1–16.
Carion, N., Massa, F., Synnaeve, G., et al.: End-to-end object detection with transformers, pp. 213–229. Springer (2020)
Dai, Y., Liu, W., Wang, H., et al.: Yolo-former: Marrying yolo and transformer for foreign object detection. IEEE T. Instrum. Meas. 71, 1–14 (2022)
Elfwing, S., Uchibe, E., Doya, K.: Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Netw. 107, 3–11 (2018)
S. Liu, L. Qi, and H. Qin, "Path Aggregation Network for Instance Segmentation," In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018), pp. 8759–8768.
A. Neubeck, and L. Van Gool, "Efficient Non-Maximum Suppression," in 18th International Conference on Pattern Recognition (ICPR'06)(2006), pp. 850–855.
T. Lin, P. Dollár, R. Girshick, et al., "Feature Pyramid Networks for Object Detection," In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 936–944.
S. Wang, Z. Ye and Y. Yang. “Real-time dangerous objects detection in millimeter wave images.” International Conference on Digital Image Processing (2018).
A. Vaswani, N. M. Shazeer, N. Parmar, et al., "Attention is All you Need," in NIPS (2017).
Zheng, Z., Wang, P., Ren, D., et al.: Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE T. Cybern. 52(8), 8574–8586 (2022)
C. Wang, A. Bochkovskiy, and H. Liao, "Scaled-YOLOv4: Scaling Cross Stage Partial Network," In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021), pp. 13024–13033.
C. Feng, Y. Zhong, Y. Gao et al., "TOOD: Task-aligned One-stage Object Detection," In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV) (2021), pp. 3490–3499.
Ge, Z., Liu, S., Wang, F., et al.: Yolox: Exceeding yolo series in 2021. (2021). arXiv:2107.08430. Accessed 16 Jul 2023
Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE T. Pattern Anal. 39(6), 1137–1149 (2017)
Li, Z., Zhou, F.: FSSD: Feature fusion single shot multibox detector. (2017). https://arxiv.org/abs/1712.00960. Accessed 20 Jan 2024
留言 (0)