Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet. 2019;393:2636–46. https://doi.org/10.1016/S0140-6736(19)31138-9.
Petermann-Rocha F, Balntzi V, Gray SR, Lara J, Ho FK, Pell JP. et al. Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2022;13:86–99. https://doi.org/10.1002/jcsm.12783.
Gao K, Cao LF, Ma WZ, Gao YJ, Luo MS, Zhu J. et al. Association between sarcopenia and cardiovascular disease among middle-aged and older adults: Findings from the China health and retirement longitudinal study. EClinicalMedicine. 2022;44:101264. https://doi.org/10.1016/j.eclinm.2021.101264.
Article PubMed PubMed Central Google Scholar
He N, Zhang Y, Zhang L, Zhang S, Ye H. Relationship between sarcopenia and cardiovascular diseases in the elderly: an overview. Front Cardiovasc Med. 2021;8:743710. https://doi.org/10.3389/fcvm.2021.743710.
Article CAS PubMed PubMed Central Google Scholar
Sousa AS, Guerra RS, Fonseca I, Pichel F, Ferreira S, Amaral TF. Financial impact of sarcopenia on hospitalization costs. Eur J Clin Nutr. 2016;70:1046–51. https://doi.org/10.1038/ejcn.2016.73.
Article CAS PubMed Google Scholar
Bruyère O, Beaudart C, Ethgen O, Reginster JY, Locquet M. The health economics burden of sarcopenia: a systematic review. Maturitas 2019;119:61–69. https://doi.org/10.1016/j.maturitas.2018.11.003.
Petermann-Rocha F, Ho FK, Welsh P, Mackay D, Brown R, Gill J. et al. Physical capability markers used to define sarcopenia and their association with cardiovascular and respiratory outcomes and all-cause mortality: a prospective study from UK Biobank. Maturitas. 2020;138:69–75. https://doi.org/10.1016/j.maturitas.2020.04.017.
Xie WQ, He M, Yu DJ, Wu YX, Wang XH, Lv S. et al. Mouse models of sarcopenia: classification and evaluation. J Cachexia Sarcopenia Muscle. 2021;12:538–54. https://doi.org/10.1002/jcsm.12709.
Article PubMed PubMed Central Google Scholar
Lee SM, Edmonston B. Living Alone Among Older Adults in Canada and the U.S. Healthc (Basel). 2019;7:68. https://doi.org/10.3390/healthcare7020068.
Yang J, Huang J, Yang X, Li S, Wu X, Ma X. The association of living alone and social isolation with sarcopenia: a systematic review and meta-analysis. Ageing Res Rev. 2023;91:102043. https://doi.org/10.1016/j.arr.2023.102043.
Sha T, Li W, He H, Wu J, Wang Y, Li H. Causal relationship of genetically predicted serum micronutrients levels with sarcopenia: a mendelian randomization study. Front Nutr. 2022;9:913155. https://doi.org/10.3389/fnut.2022.913155.
Article CAS PubMed PubMed Central Google Scholar
Zhong J, Xie W, Wang X, Dong X, Mo Y, Liu D. et al. The prevalence of sarcopenia among hunan province community-dwelling adults aged 60 years and older and its relationship with lifestyle: diagnostic criteria from the asian working group for sarcopenia 2019 update. Med (Kaunas). 2022;58:1562. https://doi.org/10.3390/medicina58111562.
Muckenthaler MU, Rivella S, Hentze MW, Galy B. A red carpet for iron metabolism. Cell 2017;168:344–61. https://doi.org/10.1016/j.cell.2016.12.034.
Article CAS PubMed PubMed Central Google Scholar
McClung JP. Iron, zinc, and physical performance. Biol Trace Elem Res. 2019;188:135–9. https://doi.org/10.1007/s12011-018-1479-7.
Article CAS PubMed Google Scholar
Hong SH, Bae YJ. Association between alcohol consumption and the risk of sarcopenia: a systematic review and meta-analysis. Nutrients. 2022;14:3266 https://doi.org/10.3390/nu14163266.
Article PubMed PubMed Central Google Scholar
Chen Y, Liu C, Hu M. Association between triglyceride-glucose index and sarcopenia in China: a nationally representative cohort study. Exp Gerontol. 2024;190:112419. https://doi.org/10.1016/j.exger.2024.112419.
Article CAS PubMed Google Scholar
Yang J, Liu C, Zhao S, Wang L, Wu G, Zhao Z. et al. The association between the triglyceride-glucose index and sarcopenia: data from the NHANES 2011–2018. Lipids Health Dis. 2024;23:219. https://doi.org/10.1186/s12944-024-02201-1.
Article CAS PubMed PubMed Central Google Scholar
Ludwig IA, Clifford MN, Lean ME, Ashihara H, Crozier A. Coffee: biochemistry and potential impact on health. Food Funct. 2014;5:1695–717. https://doi.org/10.1039/c4fo00042k.
Article CAS PubMed Google Scholar
Guo Y, Niu K, Okazaki T, Wu H, Yoshikawa T, Ohrui T. et al. Coffee treatment prevents the progression of sarcopenia in aged mice in vivo and in vitro. Exp Gerontol. 2014;50:1–8. https://doi.org/10.1016/j.exger.2013.11.005.
Article CAS PubMed Google Scholar
Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F. et al. European Working Group on Sarcopenia in Older P. Sarcopenia: european consensus on definition and diagnosis: report of the european working group on sarcopenia in older people. Age Ageing. 2010;39:412–23. https://doi.org/10.1093/ageing/afq034.
Article PubMed PubMed Central Google Scholar
Otsuka Y, Yamada Y, Maeda A, Izumo T, Rogi T, Shibata H. et al. Effects of resistance training intensity on muscle quantity/quality in middle-aged and older people: a randomized controlled trial. J Cachexia Sarcopenia Muscle. 2022;13:894–908. https://doi.org/10.1002/jcsm.12941.
Article PubMed PubMed Central Google Scholar
Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, Swanson SA. et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomization: the strobe-mr statement. JAMA. 2021;326:1614–21. https://doi.org/10.1001/jama.2021.18236.
Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, BruyŠre O, Cederholm T. et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31. https://doi.org/10.1093/ageing/afy169.
Semenova EA, Pranckevičienė E, Bondareva EA, Gabdrakhmanova LJ. Ahmetov II. identification and characterization of genomic predictors of sarcopenia and sarcopenic obesity using uk biobank data. Nutrients. 2023;15:758. https://doi.org/10.3390/nu15030758.
Article CAS PubMed PubMed Central Google Scholar
Latunde-Dada GO. Ferroptosis: role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta Gen Subj. 2017;1861:1893–1900. https://doi.org/10.1016/j.bbagen.2017.05.019.
Article CAS PubMed Google Scholar
Reardon TF, Allen DG. Iron injections in mice increase skeletal muscle iron content, induce oxidative stress and reduce exercise performance. Exp Physiol. 2009;94:720–30. https://doi.org/10.1113/expphysiol.2008.046045.
Article CAS PubMed Google Scholar
Ikeda Y, Imao M, Satoh A, Watanabe H, Hamano H, Horinouchi Y. et al. Iron-induced skeletal muscle atrophy involves an Akt-forkhead box O3-E3 ubiquitin ligase-dependent pathway. J Trace Elem Med Biol. 2016;35:66–76. https://doi.org/10.1016/j.jtemb.2016.01.011.
Article CAS PubMed Google Scholar
Vinke JSJ, Gorter AR, Eisenga MF, Dam WA, van der Meer P, van den Born J. et al. Iron deficiency is related to lower muscle mass in community-dwelling individuals and impairs myoblast proliferation. J Cachexia Sarcopenia Muscle. 2023;14:1865–79. https://doi.org/10.1002/jcsm.13277.
Article PubMed PubMed Central Google Scholar
Stugiewicz M, Tkaczyszyn M, Kasztura M, Banasiak W, Ponikowski P, Jankowska EA. The influence of iron deficiency on the functioning of skeletal muscles: experimental evidence and clinical implications. Eur J Heart Fail. 2016;18:762–73.
留言 (0)