The causal relationships between iron status and sarcopenia in Europeans: a bidirectional two-sample Mendelian randomization study

Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet. 2019;393:2636–46. https://doi.org/10.1016/S0140-6736(19)31138-9.

Article  PubMed  Google Scholar 

Petermann-Rocha F, Balntzi V, Gray SR, Lara J, Ho FK, Pell JP. et al. Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2022;13:86–99. https://doi.org/10.1002/jcsm.12783.

Article  PubMed  Google Scholar 

Gao K, Cao LF, Ma WZ, Gao YJ, Luo MS, Zhu J. et al. Association between sarcopenia and cardiovascular disease among middle-aged and older adults: Findings from the China health and retirement longitudinal study. EClinicalMedicine. 2022;44:101264. https://doi.org/10.1016/j.eclinm.2021.101264.

Article  PubMed  PubMed Central  Google Scholar 

He N, Zhang Y, Zhang L, Zhang S, Ye H. Relationship between sarcopenia and cardiovascular diseases in the elderly: an overview. Front Cardiovasc Med. 2021;8:743710. https://doi.org/10.3389/fcvm.2021.743710.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sousa AS, Guerra RS, Fonseca I, Pichel F, Ferreira S, Amaral TF. Financial impact of sarcopenia on hospitalization costs. Eur J Clin Nutr. 2016;70:1046–51. https://doi.org/10.1038/ejcn.2016.73.

Article  CAS  PubMed  Google Scholar 

Bruyère O, Beaudart C, Ethgen O, Reginster JY, Locquet M. The health economics burden of sarcopenia: a systematic review. Maturitas 2019;119:61–69. https://doi.org/10.1016/j.maturitas.2018.11.003.

Article  PubMed  Google Scholar 

Petermann-Rocha F, Ho FK, Welsh P, Mackay D, Brown R, Gill J. et al. Physical capability markers used to define sarcopenia and their association with cardiovascular and respiratory outcomes and all-cause mortality: a prospective study from UK Biobank. Maturitas. 2020;138:69–75. https://doi.org/10.1016/j.maturitas.2020.04.017.

Article  PubMed  Google Scholar 

Xie WQ, He M, Yu DJ, Wu YX, Wang XH, Lv S. et al. Mouse models of sarcopenia: classification and evaluation. J Cachexia Sarcopenia Muscle. 2021;12:538–54. https://doi.org/10.1002/jcsm.12709.

Article  PubMed  PubMed Central  Google Scholar 

Lee SM, Edmonston B. Living Alone Among Older Adults in Canada and the U.S. Healthc (Basel). 2019;7:68. https://doi.org/10.3390/healthcare7020068.

Article  Google Scholar 

Yang J, Huang J, Yang X, Li S, Wu X, Ma X. The association of living alone and social isolation with sarcopenia: a systematic review and meta-analysis. Ageing Res Rev. 2023;91:102043. https://doi.org/10.1016/j.arr.2023.102043.

Article  PubMed  Google Scholar 

Sha T, Li W, He H, Wu J, Wang Y, Li H. Causal relationship of genetically predicted serum micronutrients levels with sarcopenia: a mendelian randomization study. Front Nutr. 2022;9:913155. https://doi.org/10.3389/fnut.2022.913155.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhong J, Xie W, Wang X, Dong X, Mo Y, Liu D. et al. The prevalence of sarcopenia among hunan province community-dwelling adults aged 60 years and older and its relationship with lifestyle: diagnostic criteria from the asian working group for sarcopenia 2019 update. Med (Kaunas). 2022;58:1562. https://doi.org/10.3390/medicina58111562.

Article  Google Scholar 

Muckenthaler MU, Rivella S, Hentze MW, Galy B. A red carpet for iron metabolism. Cell 2017;168:344–61. https://doi.org/10.1016/j.cell.2016.12.034.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McClung JP. Iron, zinc, and physical performance. Biol Trace Elem Res. 2019;188:135–9. https://doi.org/10.1007/s12011-018-1479-7.

Article  CAS  PubMed  Google Scholar 

Hong SH, Bae YJ. Association between alcohol consumption and the risk of sarcopenia: a systematic review and meta-analysis. Nutrients. 2022;14:3266 https://doi.org/10.3390/nu14163266.

Article  PubMed  PubMed Central  Google Scholar 

Chen Y, Liu C, Hu M. Association between triglyceride-glucose index and sarcopenia in China: a nationally representative cohort study. Exp Gerontol. 2024;190:112419. https://doi.org/10.1016/j.exger.2024.112419.

Article  CAS  PubMed  Google Scholar 

Yang J, Liu C, Zhao S, Wang L, Wu G, Zhao Z. et al. The association between the triglyceride-glucose index and sarcopenia: data from the NHANES 2011–2018. Lipids Health Dis. 2024;23:219. https://doi.org/10.1186/s12944-024-02201-1.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ludwig IA, Clifford MN, Lean ME, Ashihara H, Crozier A. Coffee: biochemistry and potential impact on health. Food Funct. 2014;5:1695–717. https://doi.org/10.1039/c4fo00042k.

Article  CAS  PubMed  Google Scholar 

Guo Y, Niu K, Okazaki T, Wu H, Yoshikawa T, Ohrui T. et al. Coffee treatment prevents the progression of sarcopenia in aged mice in vivo and in vitro. Exp Gerontol. 2014;50:1–8. https://doi.org/10.1016/j.exger.2013.11.005.

Article  CAS  PubMed  Google Scholar 

Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F. et al. European Working Group on Sarcopenia in Older P. Sarcopenia: european consensus on definition and diagnosis: report of the european working group on sarcopenia in older people. Age Ageing. 2010;39:412–23. https://doi.org/10.1093/ageing/afq034.

Article  PubMed  PubMed Central  Google Scholar 

Otsuka Y, Yamada Y, Maeda A, Izumo T, Rogi T, Shibata H. et al. Effects of resistance training intensity on muscle quantity/quality in middle-aged and older people: a randomized controlled trial. J Cachexia Sarcopenia Muscle. 2022;13:894–908. https://doi.org/10.1002/jcsm.12941.

Article  PubMed  PubMed Central  Google Scholar 

Skrivankova VW, Richmond RC, Woolf BAR, Yarmolinsky J, Davies NM, Swanson SA. et al. Strengthening the reporting of observational studies in epidemiology using mendelian randomization: the strobe-mr statement. JAMA. 2021;326:1614–21. https://doi.org/10.1001/jama.2021.18236.

Article  PubMed  Google Scholar 

Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, BruyŠre O, Cederholm T. et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48:16–31. https://doi.org/10.1093/ageing/afy169.

Article  PubMed  Google Scholar 

Semenova EA, Pranckevičienė E, Bondareva EA, Gabdrakhmanova LJ. Ahmetov II. identification and characterization of genomic predictors of sarcopenia and sarcopenic obesity using uk biobank data. Nutrients. 2023;15:758. https://doi.org/10.3390/nu15030758.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Latunde-Dada GO. Ferroptosis: role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta Gen Subj. 2017;1861:1893–1900. https://doi.org/10.1016/j.bbagen.2017.05.019.

Article  CAS  PubMed  Google Scholar 

Reardon TF, Allen DG. Iron injections in mice increase skeletal muscle iron content, induce oxidative stress and reduce exercise performance. Exp Physiol. 2009;94:720–30. https://doi.org/10.1113/expphysiol.2008.046045.

Article  CAS  PubMed  Google Scholar 

Ikeda Y, Imao M, Satoh A, Watanabe H, Hamano H, Horinouchi Y. et al. Iron-induced skeletal muscle atrophy involves an Akt-forkhead box O3-E3 ubiquitin ligase-dependent pathway. J Trace Elem Med Biol. 2016;35:66–76. https://doi.org/10.1016/j.jtemb.2016.01.011.

Article  CAS  PubMed  Google Scholar 

Vinke JSJ, Gorter AR, Eisenga MF, Dam WA, van der Meer P, van den Born J. et al. Iron deficiency is related to lower muscle mass in community-dwelling individuals and impairs myoblast proliferation. J Cachexia Sarcopenia Muscle. 2023;14:1865–79. https://doi.org/10.1002/jcsm.13277.

Article  PubMed  PubMed Central  Google Scholar 

Stugiewicz M, Tkaczyszyn M, Kasztura M, Banasiak W, Ponikowski P, Jankowska EA. The influence of iron deficiency on the functioning of skeletal muscles: experimental evidence and clinical implications. Eur J Heart Fail. 2016;18:762–73.

留言 (0)

沒有登入
gif