Preparation and characterization of aptamer-based sorbent for the selective extraction of zearalenone and its derivatives from human urine

Zhou M, Yang LJ, Yang WR, Huang LB, Zhou XM, Jiang SZ, Yang ZB. Effects of zearalenone on the localization and expression of the growth hormone receptor gene in the uteri of post-weaning piglets. Asian-Australas J Anim Sci. 2018;31:32–9. https://doi.org/10.5713/ajas.17.0526.

Article  CAS  PubMed  Google Scholar 

Rai A, Das M, Tripathi A. Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Crit Rev Food Sci Nutr. 2020;60:2710–29. https://doi.org/10.1080/10408398.2019.1655388.

Article  CAS  PubMed  Google Scholar 

Nuryono N, Noviandi CT, Böhm J, Razzazi-Fazeli E. A limited survey of zearalenone in Indonesian maize-based food and feed by ELISA and high performance liquid chromatography. Food Control. 2005;16:65–71. https://doi.org/10.1016/j.foodcont.2003.11.009.

Article  CAS  Google Scholar 

Al-Taher F, Cappozzo J, Zweigenbaum J, Lee HJ, Jackson L, Ryu D. Detection and quantitation of mycotoxins in infant cereals in the U.S. market by LC-MS/MS using a stable isotope dilution assay. Food Control. 2017;72:27–35. https://doi.org/10.1016/j.foodcont.2016.07.027.

Article  CAS  Google Scholar 

Lijalem YG, Gab-Allah MA, Choi K, Kim B. Development of isotope dilution-liquid chromatography/tandem mass spectrometry for the accurate determination of zearalenone and its metabolites in corn. Food Chem. 2022;384: 132483. https://doi.org/10.1016/j.foodchem.2022.132483.

Article  CAS  PubMed  Google Scholar 

Eskola M, Kos G, Elliott CT, Hajšlová J, Mayar S, Krska R. Worldwide contamination of food-crops with mycotoxins: validity of the widely cited ‘FAO estimate’ of 25%. Crit Rev Food Sci Nutr. 2020;60:2773–89. https://doi.org/10.1080/10408398.2019.1658570.

Article  CAS  PubMed  Google Scholar 

Ali N, Degen GH. Biomonitoring of zearalenone and its main metabolites in urines of Bangladeshi adults. Food Chem Toxicol. 2019;130:276–83. https://doi.org/10.1016/j.fct.2019.05.036.

Article  CAS  PubMed  Google Scholar 

Belhassen H, Jiménez-Díaz I, Ghali R, Ghorbel H, Molina-Molina JM, Olea N, Hedili A. Validation of a UHPLC–MS/MS method for quantification of zearalenone, α-zearalenol, β-zearalenol, α-zearalanol, β-zearalanol and zearalanone in human urine. J Chromatogr B. 2014;962:68–74. https://doi.org/10.1016/j.jchromb.2014.05.019.

Article  CAS  Google Scholar 

Pichon V, Brothier F, Combès A. Aptamer-based-sorbents for sample treatment—a review. Anal Bioanal Chem. 2014;407:681–98. https://doi.org/10.1007/s00216-014-8129-5.

Article  CAS  PubMed  Google Scholar 

Piqueras-García N, Vergara-Barberán M, Lerma-García MJ, Herrero-Martínez JM. Aptamer-functionalized magnetic supports for sample preparation. Advances in Sample Preparation. 2023;7: 100083. https://doi.org/10.1016/j.sampre.2023.100083.

Article  Google Scholar 

Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase | Analytical Chemistry. https://pubs-acs-org.inc.bib.cnrs.fr/doi/10.1021/ac0105437 . Accessed 11 Sep 2024.

Hamula CLA, Guthrie JW, Zhang H, Li X-F, Le XC. Selection and analytical applications of aptamers. TrAC, Trends Anal Chem. 2006;25:681–91. https://doi.org/10.1016/j.trac.2006.05.007.

Article  CAS  Google Scholar 

Peyrin E. Nucleic acid aptamer molecular recognition principles and application in liquid chromatography and capillary electrophoresis. J Sep Sci. 2009;32:1531–6. https://doi.org/10.1002/jssc.200900061.

Article  CAS  PubMed  Google Scholar 

Chen X, Huang Y, Duan N, Wu S, Ma X, Xia Y, Zhu C, Jiang Y, Wang Z. Selection and identification of ssDNA aptamers recognizing zearalenone. Anal Bioanal Chem. 2013;405:6573–81. https://doi.org/10.1007/s00216-013-7085-9.

Article  CAS  PubMed  Google Scholar 

Azri FA, Selamat J, Sukor R, Yusof NA, Raston NHA, Eissa S, Zourob M, Chinnappan R. Determination of minimal sequence for zearalenone aptamer by computational docking and application on an indirect competitive electrochemical aptasensor. Anal Bioanal Chem. 2021;413:3861–72. https://doi.org/10.1007/s00216-021-03336-1.

Article  CAS  PubMed  Google Scholar 

Chapuis-Hugon F, du Boisbaudry A, Madru B, Pichon V. New extraction sorbent based on aptamers for the determination of ochratoxin A in red wine. Anal Bioanal Chem. 2011;400:1199–207. https://doi.org/10.1007/s00216-010-4574-y.

Article  CAS  PubMed  Google Scholar 

Ali WH, Pichon V. Characterization of oligosorbents and application to the purification of ochratoxin A from wheat extracts. Anal Bioanal Chem. 2014;406:1233–40. https://doi.org/10.1007/s00216-013-7509-6.

Article  CAS  PubMed  Google Scholar 

Madru B, Chapuis-Hugon F, Peyrin E, Pichon V. Determination of cocaine in human plasma by selective solid-phase extraction using an aptamer-based sorbent. Anal Chem. 2009;81:7081–6. https://doi.org/10.1021/ac9006667.

Article  CAS  PubMed  Google Scholar 

Bandera EV, Chandran U, Buckley B, Lin Y, Isukapalli S, Marshall I, King M, Zarbl H. Urinary mycoestrogens, body size and breast development in New Jersey girls. Sci Total Environ. 2011;409:5221–7. https://doi.org/10.1016/j.scitotenv.2011.09.029.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Solfrizzo M, Gambacorta L, Visconti A. Assessment of multi-mycotoxin exposure in Southern Italy by urinary multi-biomarker determination. Toxins (Basel). 2014;6:523–38. https://doi.org/10.3390/toxins6020523.

Article  CAS  PubMed  Google Scholar 

Kuiper-Goodman T, Scott PM, Watanabe H. Risk assessment of the mycotoxin zearalenone. Regul Toxicol Pharmacol. 1987;7:253–306. https://doi.org/10.1016/0273-2300(87)90037-7.

Article  CAS  PubMed  Google Scholar 

Zöllner P, Jodlbauer J, Kleinova M, Kahlbacher H, Kuhn T, Hochsteiner W, Lindner W. Concentration levels of zearalenone and its metabolites in urine, muscle tissue, and liver samples of pigs fed with mycotoxin-contaminated oats. J Agric Food Chem. 2002;50:2494–501. https://doi.org/10.1021/jf0113631.

Article  CAS  PubMed  Google Scholar 

Ali N, Degen GH. Urinary biomarkers of exposure to the mycoestrogen zearalenone and its modified forms in German adults. Arch Toxicol. 2018;92:2691–700. https://doi.org/10.1007/s00204-018-2261-5.

Article  CAS  PubMed  Google Scholar 

Thanner S, Czeglédi L, Schwartz-Zimmermann HE, Berthiller F, Gutzwiller A. Urinary deoxynivalenol (DON) and zearalenone (ZEA) as biomarkers of DON and ZEA exposure of pigs. Mycotoxin Res. 2016;32:69–75. https://doi.org/10.1007/s12550-016-0241-2.

Article  CAS  PubMed  Google Scholar 

Kyei NNA, Cramer B, Humpf H-U, Degen GH, Ali N, Gabrysch S. Assessment of multiple mycotoxin exposure and its association with food consumption: a human biomonitoring study in a pregnant cohort in rural Bangladesh. Arch Toxicol. 2022;96:2123–38. https://doi.org/10.1007/s00204-022-03288-0.

Article  CAS  PubMed  PubMed Central  Google Scholar 

De Andrés F, Zougagh M, Castañeda G, Ríos A. Determination of zearalenone and its metabolites in urine samples by liquid chromatography with electrochemical detection using a carbon nanotube-modified electrode. J Chromatogr A. 2008;1212:54–60. https://doi.org/10.1016/j.chroma.2008.09.112.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif