Structure of the yeast ceramide synthase

Hannun, Y. A. & Obeid, L. M. Many ceramides. J. Biol. Chem. 286, 27855–27862 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dadsena, S. et al. Ceramides bind VDAC2 to trigger mitochondrial apoptosis. Nat. Commun. 10, 1832 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Pettus, B. J., Chalfant, C. E. & Hannun, Y. A. Ceramide in apoptosis: an overview and current perspectives. Biochim. Biophys. Acta 1585, 114–125 (2002).

Article  CAS  PubMed  Google Scholar 

Hannun, Y. A. & Obeid, L. M. Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 19, 175–191 (2018).

Article  CAS  PubMed  Google Scholar 

Turpin, S. M. et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 20, 678–686 (2014).

Article  CAS  PubMed  Google Scholar 

Holland, W. L. et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 5, 167–179 (2007).

Article  CAS  PubMed  Google Scholar 

Raichur, S. et al. CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab. 20, 687–695 (2014).

Article  CAS  PubMed  Google Scholar 

Morad, S. A. F. & Cabot, M. C. Ceramide-orchestrated signalling in cancer cells. Nat. Rev. Cancer 13, 51–65 (2013).

Article  CAS  PubMed  Google Scholar 

Coant, N., García-Barros, M., Zhang, Q., Obeid, L. M. & Hannun, Y. A. AKT as a key target for growth promoting functions of neutral ceramidase in colon cancer cells. Oncogene 37, 3852–3863 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Canals, D. et al. Ceramide launches an acute anti-adhesion pro-migration cell signaling program in response to chemotherapy. FASEB J. 34, 7610–7630 (2020).

Article  CAS  PubMed  Google Scholar 

Jana, A., Hogan, E. L. & Pahan, K. Ceramide and neurodegeneration: susceptibility of neurons and oligodendrocytes to cell damage and death. J. Neurol. Sci. 278, 5–15 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Choi, M. J. & Maibach, H. I. Role of ceramides in barrier function of healthy and diseased skin. Am. J. Clin. Dermatol 6, 215–223 (2005).

Article  PubMed  Google Scholar 

Sribney, M. Enzymatic synthesis of ceramide. Biochim. Biophys. Acta 125, 542–547 (1966).

Article  CAS  PubMed  Google Scholar 

Morell, P. & Radin, N. S. Specificity in ceramide biosynthesis from long chain bases and various fatty acyl coenzyme A’s by brain microsomes. J. Biol. Chem. 245, 342–350 (1970).

Article  CAS  PubMed  Google Scholar 

Mullen, T. D., Hannun, Y. A. & Obeid, L. M. Ceramide synthases at the centre of sphingolipid metabolism and biology. Biochem. J. 441, 789–802 (2012).

Article  CAS  PubMed  Google Scholar 

Hanada, K. Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim. Biophys. Acta 1632, 16–30 (2003).

Article  CAS  PubMed  Google Scholar 

Körner, C. & Fröhlich, F. Compartmentation and functions of sphingolipids. Curr. Opin. Cell Biol. 74, 104–111 (2022).

Article  PubMed  Google Scholar 

Breslow, D. K. et al. Orm family proteins mediate sphingolipid homeostasis. Nature 463, 1048–1053 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schäfer, J.-H. et al. Structure of the ceramide-bound SPOTS complex. Nat. Commun. 14, 6196 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Megyeri, M. et al. Yeast ceramide synthases, Lag1 and Lac1, have distinct substrate specificity. J. Cell Sci. 132, jcs228411 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Clausmeyer, L. & Fröhlich, F. Mechanisms of nonvesicular ceramide transport. Contact 6, 25152564231208250 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Limar, S. et al. Yeast Svf1 binds ceramides and contributes to sphingolipid metabolism at the ER cis-Golgi interface. J. Cell Biol. 222, e202109162 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Funato, K. & Riezman, H. Vesicular and nonvesicular transport of ceramide from ER to the Golgi apparatus in yeast. J. Cell Biol. 155, 949–960 (2001).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumagai, K. et al. CERT mediates intermembrane transfer of various molecular species of ceramides. J. Biol. Chem. 280, 6488–6495 (2005).

Article  CAS  PubMed  Google Scholar 

Winter, E. & Ponting, C. P. TRAM, LAG1 and CLN8: members of a novel family of lipid-sensing domains? Trends Biochem. Sci. 27, 381–383 (2002).

Article  CAS  PubMed  Google Scholar 

Venkataraman, K. et al. Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells. J. Biol. Chem. 277, 35642–35649 (2002).

Article  CAS  PubMed  Google Scholar 

Laviad, E. L. et al. Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. J. Biol. Chem. 283, 5677–5684 (2008).

Article  CAS  PubMed  Google Scholar 

Riebeling, C., Allegood, J. C., Wang, E., Merrill, A. H. & Futerman, A. H. Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors. J. Biol. Chem. 278, 43452–43459 (2003).

Article  CAS  PubMed  Google Scholar 

Mizutani, Y., Kihara, A. & Igarashi, Y. Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochem. J. 390, 263–271 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tidhar, R. et al. Eleven residues determine the acyl chain specificity of ceramide synthases. J. Biol. Chem. 293, 9912–9921 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sociale, M. et al. Ceramide synthase Schlank is a transcriptional regulator adapting gene expression to energy requirements. Cell Rep. 22, 967–978 (2018).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif