Chow LQM (2020) Head and Neck Cancer. N Engl J Med 382:60–72. https://doi.org/10.1056/NEJMra1715715
Article CAS PubMed Google Scholar
da Cunha AR, Compton K, Xu R et al (2023) The Global, Regional, and National Burden of Adult Lip, oral, and pharyngeal Cancer in 204 countries and territories. JAMA Oncol 9:1401. https://doi.org/10.1001/jamaoncol.2023.2960
Article PubMed PubMed Central Google Scholar
Xing Y, Zhang J, Lin H et al (2016) Relation between the level of lymph node metastasis and survival in locally advanced head and neck squamous cell carcinoma. Cancer 122:534–545. https://doi.org/10.1002/cncr.29780
Oh LJ, Phan K, Kim SW et al (2020) Elective neck dissection versus observation for early-stage oral squamous cell carcinoma: systematic review and meta-analysis. Oral Oncol 105:104661. https://doi.org/10.1016/j.oraloncology.2020.104661
Article CAS PubMed Google Scholar
Li B, Li D, Lau DH et al (2009) Clinical-dosimetric analysis of measures of dysphagia including gastrostomy-tube dependence among head and neck cancer patients treated definitively by intensity-modulated radiotherapy with concurrent chemotherapy. Radiat Oncol 4:52. https://doi.org/10.1186/1748-717X-4-52
Article PubMed PubMed Central Google Scholar
Lu G, Chen L (2022) Cervical lymph node metastases in papillary thyroid cancer. Med (Baltim) 101:e28909. https://doi.org/10.1097/MD.0000000000028909
Pandeshwar P, Jayanthi K, Raghuram P (2013) Pre-operative contrast enhanced computer tomographic evaluation of cervical nodal metastatic disease in oral squamous cell carcinoma. Indian J Cancer 50:310. https://doi.org/10.4103/0019-509X.123605
Article CAS PubMed Google Scholar
Kinner S, Maderwald S, Albert J et al (2013) Discrimination of Benign and Malignant Lymph nodes at 7.0T compared to 1.5T magnetic resonance imaging using Ultrasmall particles of Iron Oxide. Acad Radiol 20:1604–1609. https://doi.org/10.1016/j.acra.2013.09.004
Liao L-J, Lo W-C, Hsu W-L et al (2012) Detection of cervical lymph node metastasis in head and neck cancer patients with clinically N0 neck—a meta-analysis comparing different imaging modalities. BMC Cancer 12:236. https://doi.org/10.1186/1471-2407-12-236
Article PubMed PubMed Central Google Scholar
Greenberg JS, El Naggar AK, Mo V et al (2003) Disparity in pathologic and clinical lymph node staging in oral tongue carcinoma. Cancer 98:508–515. https://doi.org/10.1002/cncr.11526
Sheppard SC, Frech L, Giger R, Nisa L (2021) Lymph node yield and ratio in selective and modified radical Neck dissection in Head and Neck Cancer—Impact on Oncological Outcome. Cancers (Basel) 13:2205. https://doi.org/10.3390/cancers13092205
Pinto A (2010) Spectrum of diagnostic errors in radiology. World J Radiol 2:377. https://doi.org/10.4329/wjr.v2.i10.377
Article PubMed PubMed Central Google Scholar
Ciello Adel, Franchi P, Contegiacomo A et al (2017) Missed lung cancer: when, where, and why? Diagn Interv Radiol 23:118–126. https://doi.org/10.5152/dir.2016.16187
Article PubMed PubMed Central Google Scholar
Forghani R, Chatterjee A, Reinhold C et al (2019) Head and neck squamous cell carcinoma: prediction of cervical lymph node metastasis by dual-energy CT texture analysis with machine learning. Eur Radiol 29:6172–6181. https://doi.org/10.1007/s00330-019-06159-y
Lu S, Ling H, Chen J et al (2022) MRI-based radiomics analysis for preoperative evaluation of lymph node metastasis in hypopharyngeal squamous cell carcinoma. Front Oncol 12. https://doi.org/10.3389/fonc.2022.936040
Chen L, Dohopolski M, Zhou Z et al (2021) Attention guided Lymph Node Malignancy Prediction in Head and Neck Cancer. Int J Radiat Oncol 110:1171–1179. https://doi.org/10.1016/j.ijrobp.2021.02.004
Ariji Y, Fukuda M, Kise Y et al (2019) Contrast-enhanced computed tomography image assessment of cervical lymph node metastasis in patients with oral cancer by using a deep learning system of artificial intelligence. Oral Surg Oral Med Oral Pathol Oral Radiol 127:458–463. https://doi.org/10.1016/j.oooo.2018.10.002
Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. https://doi.org/10.1136/bmj.n71. BMJ n71
Kocak B, Akinci D’Antonoli T, Mercaldo N et al (2024) METhodological RadiomICs score (METRICS): a quality scoring tool for radiomics research endorsed by EuSoMII. Insights Imaging 15:8. https://doi.org/10.1186/s13244-023-01572-w
Article PubMed PubMed Central Google Scholar
Reitsma JB, Glas AS, Rutjes AWS et al (2005) Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol 58:982–990. https://doi.org/10.1016/j.jclinepi.2005.02.022
Noma H, Matsushima Y, Ishii R (2021) Confidence interval for the AUC of SROC curve and some related methods using bootstrap for meta-analysis of diagnostic accuracy studies. Commun Stat Case Stud Data Anal Appl 7:344–358. https://doi.org/10.1080/23737484.2021.1894408
Holling H, Böhning W, Masoudi E et al (2020) Evaluation of a new version of I 2 with emphasis on diagnostic problems. Commun Stat - Simul Comput 49:942–972. https://doi.org/10.1080/03610918.2018.1489553
Noma H Discussion on Testing small study effects in multivariate meta-analysis by Chuan Hong, Salanti G, Morton S, Riley R, Chu H (2020) Stephen E. Kimmel, and Yong Chen. Biometrics 76:1255–1259. https://doi.org/10.1111/biom.13343
Noma H (2022) MVPBT: R package for publication bias tests in meta-analysis of diagnostic accuracy studies. https://doi.org/10.48550/arXiv.2209.07270
Viechtbauer W (2010) Conducting Meta-analyses in R with the metafor Package. J Stat Softw. https://doi.org/10.18637/jss.v036.i03. 36:
Balduzzi S, Rücker G, Schwarzer G (2019) How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Heal 22:153–160. https://doi.org/10.1136/ebmental-2019-300117
Kubo K, Kawahara D, Murakami Y et al (2022) Development of a radiomics and machine learning model for predicting occult cervical lymph node metastasis in patients with tongue cancer. Oral Surg Oral Med Oral Pathol Oral Radiol 134:93–101. https://doi.org/10.1016/j.oooo.2021.12.122
Xu X, Xi L, Wei L et al (2022) Deep learning assisted contrast-enhanced CT–based diagnosis of cervical lymph node metastasis of oral cancer: a retrospective study of 1466 cases. Eur Radiol 33:4303–4312. https://doi.org/10.1007/s00330-022-09355-5
Article PubMed PubMed Central Google Scholar
Yuan Y, Ren J, Tao X (2021) Machine learning–based MRI texture analysis to predict occult lymph node metastasis in early-stage oral tongue squamous cell carcinoma. Eur Radiol 31:6429–6437. https://doi.org/10.1007/s00330-021-07731-1
Windsor GO, Bai H, Lourenco AP, Jiao Z (2023) Application of artificial intelligence in predicting lymph node metastasis in breast cancer. Front Radiol 3. https://doi.org/10.3389/fradi.2023.928639
Ma Y, Lin Y, Lu J et al (2023) A meta-analysis of based radiomics for predicting lymph node metastasis in patients with biliary tract cancers. Front Surg 9. https://doi.org/10.3389/fsurg.2022.1045295
Abbaspour E, Karimzadhagh S, Monsef A et al (9900) Application of radiomics for preoperative prediction of lymph node metastasis in colorectal cancer: a systematic review and Meta-analysis. Int J Surg
Li Z, Kitajima K, Hirata K et al (2021) Preliminary study of AI-assisted diagnosis using FDG-PET/CT for axillary lymph node metastasis in patients with breast cancer. EJNMMI Res 11. https://doi.org/10.1186/s13550-021-00751-4
Chen L, Zhou Z, Sher D et al (2019) Combining many-objective radiomics and 3D convolutional neural network through evidential reasoning to predict lymph node metastasis in head and neck cancer. Phys Med Biol 64:075011. https://doi.org/10.1088/1361-6560/ab083a
Article CAS PubMed PubMed Central Google Scholar
Thompson N, Morley-Bunker A, McLauchlan J et al (2024) Use of artificial intelligence for the prediction of lymph node metastases in early-stage colorectal cancer: systematic review. BJS Open 8. https://doi.org/10.1093/bjsopen/zrae033
Shah RM, Gautam R (2023) Overcoming diagnostic challenges of artificial intelligence in pathology and radiology: innovative solutions and strategies. Indian J Med Sci 75:107. https://doi.org/10.25259/IJMS_98_2023
Mutasa S, Sun S, Ha R (2020) Understanding artificial intelligence based radiology studies: what is overfitting? Clin Imaging 65:96–99. https://doi.org/10.1016/j.clinimag.2020.04.025
Article PubMed PubMed Central Google Scholar
Sun L, Li C, Ding X et al (2022) Few-shot medical image segmentation using a global correlation network with discriminative embedding. Comput Biol Med 140:105067. https://doi.org/10.1016/j.compbiomed.2021.105067
留言 (0)