Tabassum R, Jeong NY. Potential for therapeutic use of hydrogen sulfide in oxidative stress-induced neurodegenerative diseases. Int J Med Sci. 2019;16(10):1386–96. https://doi.org/10.7150/ijms.36516.
Article CAS PubMed PubMed Central Google Scholar
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues, and organs. Physiol Rev. 2023;103(1):31–276. https://doi.org/10.1152/physrev.00028.2021.
Article CAS PubMed Google Scholar
Huerta de la Cruz S, Santiago-Castañeda CL, Rodríguez-Palma EJ, Medina-Terol GJ, López-Preza FI, Rocha L, et al. Targeting hydrogen sulfide and nitric oxide to repair cardiovascular injury after trauma. Nitric Oxide. 2022;129:82–101. https://doi.org/10.1016/j.niox.2022.10.003.
Article CAS PubMed Google Scholar
Ma JS, Chen J, Huang H. Role and mechanism of hydrogen sulfide in vascular calcification. Sheng Li Xue Bao: Acta Physiol. Sin. 2022;74(6). https://pubmed.ncbi.nlm.nih.gov/36594379/.
Qu K, Lee SW, Bian JS, Low C-M, Wong PT-H. Hydrogen sulfide: neurochemistry and neurobiology. Neurochem Int. 2008;52(1–2):155–65. https://doi.org/10.1016/j.neuint.2007.05.016.
Article CAS PubMed Google Scholar
Cuevasanta E, Denicola A, Alvarez B, Möller MN. Solubility and permeation of hydrogen sulfide in lipid membranes. PLoS ONE. 2012;7(4): e34562. https://doi.org/10.1371/journal.pone.0034562.
Article CAS PubMed PubMed Central Google Scholar
Kimura H. Production and physiological effects of hydrogen sulfide. Antioxid Redox Signal. 2014;20(5):783–93. https://doi.org/10.1089/ars.2013.5309.
Article CAS PubMed PubMed Central Google Scholar
Kimura H. Hydrogen sulfide (H2S)/polysulfides (H2Sn) signalling and TRPA1 channels modification on sulfur metabolism. Biomolecules. 2024;14(1). https://doi.org/10.3390/biom14010129
Tripathi SJ, Chakraborty S, Miller E, Pieper AA, Paul BD. Hydrogen sulfide signalling in neurodegenerative diseases. Br J Pharmacol. 2023. https://doi.org/10.1111/bph.16170.
Rodkin S, Nwosu C, Sannikov A, Raevskaya M, Tushev A, Vasilieva I, et al. The role of hydrogen sulfide in regulation of cell death following neurotrauma and related neurodegenerative and psychiatric diseases. Int J Mol Sci. 2023;24(13):10742. https://doi.org/10.3390/ijms241310742.
Article CAS PubMed PubMed Central Google Scholar
Scheid S, Goebel U, Ulbrich F. Neuroprotection is in the air-inhaled gases on their way to the neurons. Cells. 2023;12(20). https://doi.org/10.3390/cells12202480
Stipanuk MH, Beck PW. Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J. 1982;206(2):267–77. https://doi.org/10.1042/bj2060267.
Article CAS PubMed PubMed Central Google Scholar
Slade L, Deane CS, Szewczyk NJ, Etheridge T, Whiteman M. Hydrogen sulfide supplementation as a potential treatment for primary mitochondrial diseases. Pharmacol Res. 2024;203: 107180. https://doi.org/10.1016/j.phrs.2024.107180.
Article CAS PubMed Google Scholar
Myszkowska J, Derevenkov I, Makarov SV, Spiekerkoetter U, Hannibal L. Biosynthesis, quantification and genetic diseases of the smallest signaling thiol metabolite: hydrogen sulfide. Antioxidants. 2021;10(7):1065. https://doi.org/10.3390/antiox10071065.
Article CAS PubMed PubMed Central Google Scholar
Meng G, Zhao S, Xie L, Han Y, Ji Y. Protein S-sulfhydration by hydrogen sulfide in cardiovascular system: role of S-sulfhydration in cardiovascular system. Br J Pharmacol. 2018;175(8):1146–56. https://doi.org/10.1111/bph.13825.
Article CAS PubMed Google Scholar
Rao SP, Dobariya P, Bellamkonda H, More SS. Role of 3-mercaptopyruvate sulfurtransferase (3-MST) in physiology and disease. Antioxidants. 2023;12(3). https://doi.org/10.3390/antiox12030603
Buret AG, Allain T, Motta J-P, Wallace JL. Effects of hydrogen sulfide on the microbiome: from toxicity to therapy. Antioxid Redox Signal. 2022;36(4–6):211–9. https://doi.org/10.1089/ars.2021.0004.
Article CAS PubMed PubMed Central Google Scholar
Sharif AH, Iqbal M, Manhoosh B, Gholampoor N, Ma D, Marwah M, et al. Hydrogen sulphide-based therapeutics for neurological conditions: perspectives and challenges. Neurochem Res. 2023;48(7):1981–96. https://doi.org/10.1007/s11064-023-03887-y.
Article CAS PubMed PubMed Central Google Scholar
Jia Z, Zhang X, Li Z, Yan H, Tian X, Luo C, et al. Hydrogen sulfide mitigates ox-LDL-induced NLRP3/caspase-1/GSDMD dependent macrophage pyroptosis by S-sulfhydrating caspase-1. Mol Med Rep. 2024;30(2). https://doi.org/10.3892/mmr.2024.13259
Wang Y, Yu R, Wu L, Yang G. Hydrogen sulfide signaling in regulation of cell behaviors. Nitric Oxide. 2020;103:9–19. https://doi.org/10.1016/j.niox.2020.07.002.
Article CAS PubMed Google Scholar
Paul BD, Snyder SH. H2S: a novel gasotransmitter that signals by sulfhydration. Trends Biochem Sci. 2015;40(11):687–700. https://doi.org/10.1016/j.tibs.2015.08.007.
Article CAS PubMed PubMed Central Google Scholar
Furuie H, Kimura Y, Akaishi T, Yamada M, Miyasaka Y, Saitoh A, et al. Hydrogen sulfide and polysulfides induce GABA/glutamate/D-serine release, facilitate hippocampal LTP, and regulate behavioral hyperactivity. Sci Rep. 2023;13(1):17663. https://doi.org/10.1038/s41598-023-44877-y.
Article CAS PubMed PubMed Central Google Scholar
Zhao S, Li X, Lu P, Li X, Sun M, Wang H. The role of the signaling pathways involved in the effects of hydrogen sulfide on endoplasmic reticulum stress. Front Cell Dev Biol. 2021;9: 646723. https://doi.org/10.3389/fcell.2021.646723.
Article PubMed PubMed Central Google Scholar
Szabo C. Gasotransmitters in aging and age-related diseases. Ageing Res Rev. 2020;63:101–10.
Calvert JW, Coetzee WA, Lefer DJ. Novel insights into hydrogen sulfide–mediated cytoprotection. Antioxid Redox Signal. 2010;12(10):1203–17. https://doi.org/10.1089/ars.2009.2882.
Article CAS PubMed PubMed Central Google Scholar
Hu Q, Lukesh JC III. H2S donors with cytoprotective effects in models of MI/R injury and chemotherapy-induced cardiotoxicity. Antioxidants. 2023;12(3). https://doi.org/10.3390/antiox12030650
Giovinazzo D, Bursac B, Sbodio JI, Nalluru S, Vignane T, Snowman AM, et al. Hydrogen sulfide is neuroprotective in Alzheimer’s disease by sulfhydrating GSK3β and inhibiting Tau hyperphosphorylation. Proc Natl Acad Sci USA. 2021;118(4): e2017225118. https://doi.org/10.1073/pnas.2017225118.
Article CAS PubMed PubMed Central Google Scholar
Zhang J, Zhang S, Shan H, Zhang M. Biologic effect of hydrogen sulfide and its role in traumatic brain injury. Oxid Med Cell Longev. 2020:7301615. https://doi.org/10.1155/2020/7301615.
Paul BD, Pieper AA. Protective roles of hydrogen sulfide in Alzheimer’s disease and traumatic brain injury. Antioxidants. 2023;12(5). Available from: Paul BD, Pieper AA. Protective roles of hydrogen sulfide in Alzheimer’s disease and traumatic brain injury. Antioxidants. 2023;12(5). https://doi.org/10.3390/antiox12051095
Rafaiee R, Khastar H, Garmabi B, Taleb M, Norouzi P, Khaksari M. Hydrogen sulfide protects hippocampal CA1 neurons against lead mediated neuronal damage via reduction oxidative stress in male rats. J Chem Neuroanat. 2021;112(101917): 101917. https://doi.org/10.1016/j.jchemneu.2020.101917.
Article CAS PubMed Google Scholar
Zhang H, Zhi L, Moore PK. Hydrogen sulfide acts as a neuromodulator to mitigate neuroinflammation, apoptosis, and oxidative stress in stroke. J Neurochem. 2019;149(5):710–22.
Li L, Hsu A, Moore PK. Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulfide in the cardiovascular system and in inflammation-A tale of three gases! Pharmacol Ther. 2009;123:386–400.
Article CAS PubMed Google Scholar
Gopalakrishnan P, Shrestha B, Kaskas AM, Green J, Alexander JS, Pattillo CB. Hydrogen sulfide: therapeutic or injurious in ischemic stroke? Pathophysiology. 2019;26(1):1–10. https://doi.org/10.1016/j.pathophys.2018.10.005.
Article CAS PubMed Google Scholar
Corvino A, et al. Trends in H2S-donors chemistry and their effects in cardiovascular diseases. Antioxidants. 2021;10(3):429. https://doi.org/10.3390/antiox10030429.
留言 (0)