Unveiling Hydrogen Sulfide: A New Frontier in Neuroprotection and Neuromodulation

Tabassum R, Jeong NY. Potential for therapeutic use of hydrogen sulfide in oxidative stress-induced neurodegenerative diseases. Int J Med Sci. 2019;16(10):1386–96. https://doi.org/10.7150/ijms.36516.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues, and organs. Physiol Rev. 2023;103(1):31–276. https://doi.org/10.1152/physrev.00028.2021.

Article  CAS  PubMed  Google Scholar 

Huerta de la Cruz S, Santiago-Castañeda CL, Rodríguez-Palma EJ, Medina-Terol GJ, López-Preza FI, Rocha L, et al. Targeting hydrogen sulfide and nitric oxide to repair cardiovascular injury after trauma. Nitric Oxide. 2022;129:82–101. https://doi.org/10.1016/j.niox.2022.10.003.

Article  CAS  PubMed  Google Scholar 

Ma JS, Chen J, Huang H. Role and mechanism of hydrogen sulfide in vascular calcification. Sheng Li Xue Bao: Acta Physiol. Sin. 2022;74(6). https://pubmed.ncbi.nlm.nih.gov/36594379/.

Qu K, Lee SW, Bian JS, Low C-M, Wong PT-H. Hydrogen sulfide: neurochemistry and neurobiology. Neurochem Int. 2008;52(1–2):155–65. https://doi.org/10.1016/j.neuint.2007.05.016.

Article  CAS  PubMed  Google Scholar 

Cuevasanta E, Denicola A, Alvarez B, Möller MN. Solubility and permeation of hydrogen sulfide in lipid membranes. PLoS ONE. 2012;7(4): e34562. https://doi.org/10.1371/journal.pone.0034562.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kimura H. Production and physiological effects of hydrogen sulfide. Antioxid Redox Signal. 2014;20(5):783–93. https://doi.org/10.1089/ars.2013.5309.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kimura H. Hydrogen sulfide (H2S)/polysulfides (H2Sn) signalling and TRPA1 channels modification on sulfur metabolism. Biomolecules. 2024;14(1). https://doi.org/10.3390/biom14010129

Tripathi SJ, Chakraborty S, Miller E, Pieper AA, Paul BD. Hydrogen sulfide signalling in neurodegenerative diseases. Br J Pharmacol. 2023. https://doi.org/10.1111/bph.16170.

Article  PubMed  Google Scholar 

Rodkin S, Nwosu C, Sannikov A, Raevskaya M, Tushev A, Vasilieva I, et al. The role of hydrogen sulfide in regulation of cell death following neurotrauma and related neurodegenerative and psychiatric diseases. Int J Mol Sci. 2023;24(13):10742. https://doi.org/10.3390/ijms241310742.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Scheid S, Goebel U, Ulbrich F. Neuroprotection is in the air-inhaled gases on their way to the neurons. Cells. 2023;12(20). https://doi.org/10.3390/cells12202480

Stipanuk MH, Beck PW. Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J. 1982;206(2):267–77. https://doi.org/10.1042/bj2060267.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Slade L, Deane CS, Szewczyk NJ, Etheridge T, Whiteman M. Hydrogen sulfide supplementation as a potential treatment for primary mitochondrial diseases. Pharmacol Res. 2024;203: 107180. https://doi.org/10.1016/j.phrs.2024.107180.

Article  CAS  PubMed  Google Scholar 

Myszkowska J, Derevenkov I, Makarov SV, Spiekerkoetter U, Hannibal L. Biosynthesis, quantification and genetic diseases of the smallest signaling thiol metabolite: hydrogen sulfide. Antioxidants. 2021;10(7):1065. https://doi.org/10.3390/antiox10071065.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meng G, Zhao S, Xie L, Han Y, Ji Y. Protein S-sulfhydration by hydrogen sulfide in cardiovascular system: role of S-sulfhydration in cardiovascular system. Br J Pharmacol. 2018;175(8):1146–56. https://doi.org/10.1111/bph.13825.

Article  CAS  PubMed  Google Scholar 

Rao SP, Dobariya P, Bellamkonda H, More SS. Role of 3-mercaptopyruvate sulfurtransferase (3-MST) in physiology and disease. Antioxidants. 2023;12(3). https://doi.org/10.3390/antiox12030603

Buret AG, Allain T, Motta J-P, Wallace JL. Effects of hydrogen sulfide on the microbiome: from toxicity to therapy. Antioxid Redox Signal. 2022;36(4–6):211–9. https://doi.org/10.1089/ars.2021.0004.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sharif AH, Iqbal M, Manhoosh B, Gholampoor N, Ma D, Marwah M, et al. Hydrogen sulphide-based therapeutics for neurological conditions: perspectives and challenges. Neurochem Res. 2023;48(7):1981–96. https://doi.org/10.1007/s11064-023-03887-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jia Z, Zhang X, Li Z, Yan H, Tian X, Luo C, et al. Hydrogen sulfide mitigates ox-LDL-induced NLRP3/caspase-1/GSDMD dependent macrophage pyroptosis by S-sulfhydrating caspase-1. Mol Med Rep. 2024;30(2). https://doi.org/10.3892/mmr.2024.13259

Wang Y, Yu R, Wu L, Yang G. Hydrogen sulfide signaling in regulation of cell behaviors. Nitric Oxide. 2020;103:9–19. https://doi.org/10.1016/j.niox.2020.07.002.

Article  CAS  PubMed  Google Scholar 

Paul BD, Snyder SH. H2S: a novel gasotransmitter that signals by sulfhydration. Trends Biochem Sci. 2015;40(11):687–700. https://doi.org/10.1016/j.tibs.2015.08.007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Furuie H, Kimura Y, Akaishi T, Yamada M, Miyasaka Y, Saitoh A, et al. Hydrogen sulfide and polysulfides induce GABA/glutamate/D-serine release, facilitate hippocampal LTP, and regulate behavioral hyperactivity. Sci Rep. 2023;13(1):17663. https://doi.org/10.1038/s41598-023-44877-y.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao S, Li X, Lu P, Li X, Sun M, Wang H. The role of the signaling pathways involved in the effects of hydrogen sulfide on endoplasmic reticulum stress. Front Cell Dev Biol. 2021;9: 646723. https://doi.org/10.3389/fcell.2021.646723.

Article  PubMed  PubMed Central  Google Scholar 

Szabo C. Gasotransmitters in aging and age-related diseases. Ageing Res Rev. 2020;63:101–10.

Google Scholar 

Calvert JW, Coetzee WA, Lefer DJ. Novel insights into hydrogen sulfide–mediated cytoprotection. Antioxid Redox Signal. 2010;12(10):1203–17. https://doi.org/10.1089/ars.2009.2882.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hu Q, Lukesh JC III. H2S donors with cytoprotective effects in models of MI/R injury and chemotherapy-induced cardiotoxicity. Antioxidants. 2023;12(3). https://doi.org/10.3390/antiox12030650

Giovinazzo D, Bursac B, Sbodio JI, Nalluru S, Vignane T, Snowman AM, et al. Hydrogen sulfide is neuroprotective in Alzheimer’s disease by sulfhydrating GSK3β and inhibiting Tau hyperphosphorylation. Proc Natl Acad Sci USA. 2021;118(4): e2017225118. https://doi.org/10.1073/pnas.2017225118.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang J, Zhang S, Shan H, Zhang M. Biologic effect of hydrogen sulfide and its role in traumatic brain injury. Oxid Med Cell Longev. 2020:7301615. https://doi.org/10.1155/2020/7301615.

Paul BD, Pieper AA. Protective roles of hydrogen sulfide in Alzheimer’s disease and traumatic brain injury. Antioxidants. 2023;12(5). Available from: Paul BD, Pieper AA. Protective roles of hydrogen sulfide in Alzheimer’s disease and traumatic brain injury. Antioxidants. 2023;12(5). https://doi.org/10.3390/antiox12051095

Rafaiee R, Khastar H, Garmabi B, Taleb M, Norouzi P, Khaksari M. Hydrogen sulfide protects hippocampal CA1 neurons against lead mediated neuronal damage via reduction oxidative stress in male rats. J Chem Neuroanat. 2021;112(101917): 101917. https://doi.org/10.1016/j.jchemneu.2020.101917.

Article  CAS  PubMed  Google Scholar 

Zhang H, Zhi L, Moore PK. Hydrogen sulfide acts as a neuromodulator to mitigate neuroinflammation, apoptosis, and oxidative stress in stroke. J Neurochem. 2019;149(5):710–22.

Google Scholar 

Li L, Hsu A, Moore PK. Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulfide in the cardiovascular system and in inflammation-A tale of three gases! Pharmacol Ther. 2009;123:386–400.

Article  CAS  PubMed  Google Scholar 

Gopalakrishnan P, Shrestha B, Kaskas AM, Green J, Alexander JS, Pattillo CB. Hydrogen sulfide: therapeutic or injurious in ischemic stroke? Pathophysiology. 2019;26(1):1–10. https://doi.org/10.1016/j.pathophys.2018.10.005.

Article  CAS  PubMed  Google Scholar 

Corvino A, et al. Trends in H2S-donors chemistry and their effects in cardiovascular diseases. Antioxidants. 2021;10(3):429. https://doi.org/10.3390/antiox10030429.

留言 (0)

沒有登入
gif