Effects of Growth Hormone on Osteoarthritis Development

Horm Metab Res 2024; 56(11): 761-769
DOI: 10.1055/a-2411-9344

Lin Sun

1   Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China (Ringgold ID: RIN117971)

,

Xiaokun Gang

1   Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China (Ringgold ID: RIN117971)

,

Fei Li

1   Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China (Ringgold ID: RIN117971)

,

Weiying Guo

1   Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China (Ringgold ID: RIN117971)

,

Mengzhao Cui

1   Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China (Ringgold ID: RIN117971)

,

Guixia Wang

1   Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China (Ringgold ID: RIN117971)

› Author Affiliations Funding Information Youth Development Fund of the First Hospital of Jilin University | 04039890001 | National Natural Science Foundation of China | 82100871
› Further Information Also available at   SFX Search  Buy Article Permissions and Reprints Abstract

Osteoarthritis (OA), a chronic joint disease characterized by primary or secondary degeneration of articular cartilage and bone dysplasia, is associated with various risk factors and is the leading cause of musculoskeletal pain and disability, severely impacting the quality of life. Growth hormone (GH), secreted by the anterior pituitary gland, is essential in mediating the growth and development of bone and cartilage. Reportedly, osteoarthritis increases, and the growth hormone decreases with age. A negative correlation between GH and OA suggests that GH may be related to the occurrence and development of OA. Considering that abnormal growth hormone levels can lead to many diseases related to bone growth, we focus on the relationship between GH and OA. In this review, we will explain the effects of GH on the growth and deficiency of bone and cartilage based on the local pathological changes of osteoarthritis. In addition, the potential feasibility of treating OA with GH will be further explored and summarized.

Keywords growth hormone - cancer - IGF-1 - osteoarthritis - hormone regulation Publication History

Received: 23 January 2024

Accepted after revision: 01 September 2024

Article published online:
07 November 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
References 1 Li J, Zhang H, Han Y. et al. Targeted and responsive biomaterials in osteoarthritis. Theranostics 2023; 13: 931-954 2 Yao Q, Wu X, Tao C. et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 2023; 8: 56 3 Duan WL, Zhang LN, Bohara R. et al. Adhesive hydrogels in osteoarthritis: from design to application. Mil Med Res 2023; 10: 4 4 Mauras N, Ross J, Mericq V. Management of growth disorders in puberty: GH, GnRHa, and aromatase inhibitors: a clinical review. Endocr Rev 2023; 44: 1-13 5 Mazziotti G, Lania AG, Canalis E. Skeletal disorders associated with the growth hormone-insulin-like growth factor 1 axis. Nat Rev Endocrinol 2022; 18: 353-365 6 Samvelyan HJ, Huesa C, Cui L. et al. The role of accelerated growth plate fusion in the absence of SOCS2 on osteoarthritis vulnerability. Bone Joint Res 2022; 11: 162-170 7 Aguiar-Oliveira MH, Bartke A. Growth hormone deficiency: health and longevity. Endocr Rev 2019; 40: 575-601 8 Delpachitra SN, Dimitroulis G. Osteoarthritis of the temporomandibular joint: a review of aetiology and pathogenesis. Br J Oral Maxillofac Surg 2022; 60: 387-396 9 Miao Y, Chen Y, Xue F. et al. Contribution of ferroptosis and GPX4's dual functions to osteoarthritis progression. EBioMedicine 2022; 76: 103847 10 Du X, Cai L, Xie J. et al. The role of TGF-beta3 in cartilage development and osteoarthritis. Bone Res 2023; 11: 2 11 Bernabei I, So A, Busso N. et al. Cartilage calcification in osteoarthritis: mechanisms and clinical relevance. Nat Rev Rheumatol 2023; 19: 10-27 12 Oliveira S, Andrade R, Silva FS. et al. Effects and mechanotransduction pathways of therapeutic ultrasound on healthy and osteoarthritic chondrocytes: a systematic review of in vitro studies. Osteoarthritis Cartilage 2023; 31: 317-339 13 Zeng Z, Zhou X, Wang Y. et al. Mitophagy – a new target of bone disease. Biomolecules 2022; 12: 1420 14 Li B, Guan G, Mei L. et al. Pathological mechanism of chondrocytes and the surrounding environment during osteoarthritis of temporomandibular joint. J Cell Mol Med 2021; 25: 4902-4911 15 Deng Z, Chen X, Lin Z. et al. The homeostasis of cartilage matrix remodeling and the regulation of volume-sensitive ion channel. Aging Dis 2022; 13: 787-800 16 You B, Zhou C, Yang Y. MSC-EVs alleviate osteoarthritis by regulating microenvironmental cells in the articular cavity and maintaining cartilage matrix homeostasis. Ageing Res Rev 2023; 85: 101864 17 Peng Z, Sun H, Bunpetch V. et al. The regulation of cartilage extracellular matrix homeostasis in joint cartilage degeneration and regeneration. Biomaterials 2021; 268: 120555 18 Hwang HS, Kim HA. Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int J Mol Sci 2015; 16: 26035-26054 19 Almonte-Becerril M, Navarro-Garcia F, Gonzalez-Robles A. et al. Cell death of chondrocytes is a combination between apoptosis and autophagy during the pathogenesis of osteoarthritis within an experimental model. Apoptosis 2010; 15: 631-638 20 Muscaritoli M, Arends J, Bachmann P. et al. ESPEN practical guideline: clinical nutrition in cancer. Clin Nutr 2021; 40: 2898-2913 21 Hu Y, Chen X, Wang S. et al. Subchondral bone microenvironment in osteoarthritis and pain. Bone Res 2021; 9: 20 22 Ball HC, Alejo AL, Samson TK. et al. Epigenetic regulation of chondrocytes and subchondral bone in osteoarthritis. Life (Basel) 2022; 12: 582 23 Ni R, Guo XE, Yan C. et al. Hemodynamic stress shapes subchondral bone in osteoarthritis: an emerging hypothesis. J Orthop Translat 2022; 32: 85-90 24 Wu CJ, Liu RX, Huan SW. et al. Senescent skeletal cells cross-talk with synovial cells plays a key role in the pathogenesis of osteoarthritis. Arthritis Res Ther 2022; 24: 59 25 Sanchez-Lopez E, Coras R, Torres A. et al. Synovial inflammation in osteoarthritis progression. Nat Rev Rheumatol 2022; 18: 258-275 26 Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis. Bone 2012; 51: 249-257 27 Han L, Tian H, Guo X. et al. Regulation of ovarian function by growth hormone: potential intervention of ovarian aging. Front Endocrinol (Lausanne) 2022; 13: 1072313 28 Li M. The origination of growth hormone/insulin-like growth factor system: a story from ancient basal chordate amphioxus. Front Endocrinol (Lausanne) 2022; 13: 825722 29 Hage C, Salvatori R. Growth hormone and aging. Endocrinol Metab Clin North Am 2023; 52: 245-257 30 Isidro ML, Cordido F. Growth hormone secretagogues. Comb Chem High Throughput Screen 2006; 9: 175-180 31 Wang JR, Ahmed SF, Gadegaard N. et al. Nanotopology potentiates growth hormone signalling and osteogenesis of mesenchymal stem cells. Growth Horm IGF Res 2014; 24: 245-250 32 Komori T. Regulation of osteoblast differentiation by Runx2. Adv Exp Med Biol 2010; 658: 43-49 33 Darvin P, Joung YH, Yang YM. JAK2-STAT5B pathway and osteoblast differentiation. Jakstat 2013; 2: e24931 34 Yakar S, Werner H, Rosen CJ. Insulin-like growth factors: actions on the skeleton. J Mol Endocrinol 2018; 61: T115-T137 35 Park-Min KH, Lorenzo J. Osteoclasts: Other functions. Bone 2022; 165: 116576 36 Chen X, Wang Z, Duan N. et al. Osteoblast-osteoclast interactions. Connect Tissue Res 2018; 59: 99-107 37 Jimi E, Fei H, Nakatomi C. NF-κB signaling regulates physiological and pathological chondrogenesis. Int J Mol Sci 2019; 20: 6275 38 Choi MC, Jo J, Park J. et al. NF-κB Signaling pathways in osteoarthritic cartilage destruction. Cells 2019; 8: 734 39 De Luca F. Regulatory role of NF-κB in growth plate chondrogenesis and its functional interaction with Growth Hormone. Mol Cell Endocrinol 2020; 514: 110916 40 Renard E, Porée B, Chadjichristos C. et al. Sox9/Sox6 and Sp1 are involved in the insulin-like growth factor-I-mediated upregulation of human type II collagen gene expression in articular chondrocytes. J Mol Med (Berl) 2012; 90: 649-666 41 Ritchie ME, Phipson B, Wu D. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43: e47 42 Wu L, Huang X, Li L. et al. Insights on biology and pathology of HIF-1α/-2α, TGFβ/BMP, Wnt/β-catenin, and NF-κB pathways in osteoarthritis. Curr Pharm Des 2012; 18: 3293-3312 43 McKay TB, Priyadarsini S, Karamichos D. Sex hormones, growth hormone, and the cornea. Cells 2022; 11: 224 44 Horesh EJ, Chéret J, Paus R. Growth hormone and the human hair follicle. Int J Mol Sci 2021; 22: 13205 45 Ranke MB. Short and long-term effects of growth hormone in children and adolescents with GH deficiency. Front Endocrinol (Lausanne) 2021; 12: 720419 46 Chinoy A, Murray PG. Diagnosis of growth hormone deficiency in the paediatric and transitional age. Best Pract Res Clin Endocrinol Metab 2016; 30: 737-747 47 Ricci Bitti S, Franco M, Albertelli M. et al. GH Replacement in the elderly: is it worth it?. Front Endocrinol (Lausanne) 2021; 12: 680579 48 Tritos NA. Focus on growth hormone deficiency and bone in adults. Best Pract Res Clin Endocrinol Metab 2017; 31: 49-57 49 Anawalt BD, Merriam GR. Neuroendocrine aging in men. Andropause and somatopause. Endocrinol Metab Clin North Am 2001; 30: 647-669 50 Molitch ME, Clemmons DR, Malozowski S. et al. Evaluation and treatment of adult growth hormone deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2011; 96: 1587-1609 51 Brocchi A, Rebelos E, Dardano A. et al. Effects of intermittent fasting on brain metabolism. Nutrients 2022; 14: 1275 52 Cignarelli A, Genchi VA, Le Grazie G. et al. Mini review: effect of GLP-1 receptor agonists and SGLT-2 inhibitors on the growth hormone/IGF axis. Front Endocrinol (Lausanne) 2022; 13: 846903 53 Sims NA, Clément-Lacroix P, Da Ponte F. et al. Bone homeostasis in growth hormone receptor-null mice is restored by IGF-I but independent of Stat5. J Clin Invest 2000; 106: 1095-1103 54 Zhao G, Monier-Faugere MC, Langub MC. et al. Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation. Endocrinology 2000; 141: 2674-2682 55 Montaseri A, Busch F, Mobasheri A. et al. IGF-1 and PDGF-bb suppress IL-1β-induced cartilage degradation through down-regulation of NF-κB signaling: involvement of Src/PI-3K/AKT pathway. PLoS One 2011; 6: e28663 56 Dixit M, Poudel SB, Yakar S. Effects of GH/IGF axis on bone and cartilage. Mol Cell Endocrinol 2021; 519: 111052 57 Sher LB, Woitge HW, Adams DJ. et al. Transgenic expression of 11beta-hydroxysteroid dehydrogenase type 2 in osteoblasts reveals an anabolic role for endogenous glucocorticoids in bone. Endocrinology 2004; 145: 922-929 58 Canalis E, Delany AM. Mechanisms of glucocorticoid action in bone. Ann N Y Acad Sci 2002; 966: 73-81 59 Olney RC. Mechanisms of impaired growth: effect of steroids on bone and cartilage. Horm Res 2009; 72: 30-35 60 Kaufmann S, Jones KL, Wehrenberg WB. et al. Inhibition by prednisone of growth hormone (GH) response to GH-releasing hormone in normal men. J Clin Endocrinol Metab 1988; 67: 1258-1261 61 Kritsch KR, Murali S, Adamo ML. et al. Dexamethasone decreases serum and liver IGF-I and maintains liver IGF-I mRNA in parenterally fed rats. Am J Physiol Regul Integr Comp Physiol 2002; 282: R528-R536 62 Chrysis D, Ritzen EM, Sävendahl L. Growth retardation induced by dexamethasone is associated with increased apoptosis of the growth plate chondrocytes. J Endocrinol 2003; 176: 331-337 63 Jux C, Leiber K, Hügel U. et al. Dexamethasone impairs growth hormone (GH)-stimulated growth by suppression of local insulin-like growth factor (IGF)-I production and expression of GH- and IGF-I-receptor in cultured rat chondrocytes. Endocrinology 1998; 139: 3296-3305 64 Bechtold S, Dalla Pozza R, Schwarz HP. et al. Effects of growth hormone treatment in juvenile idiopathic arthritis: bone and body composition. Horm Res 2009; 72: 60-64 65 Bassett JH, Williams GR. Role of thyroid hormones in skeletal development and bone maintenance. Endocr Rev 2016; 37: 135-187 66 Segni M, Gorman CA. The aftermath of childhood hyperthyroidism. J Pediatr Endocrinol Metab 2001; 14: 1277-1282 discussion 1297–1298 67 Mosekilde L, Eriksen EF, Charles P. Effects of thyroid hormones on bone and mineral metabolism. Endocrinol Metab Clin North Am 1990; 19: 35-63 68 Wood DF, Franklyn JA, Docherty K. et al. The effect of thyroid hormones on growth hormone gene expression in vivo in rats. J Endocrinol 1987; 112: 459-463 69 Valcavi R, Dieguez C, Zini M. et al. Influence of hyperthyroidism on growth hormone secretion. Clin Endocrinol (Oxf) 1993; 38: 515-522 70 Portes ES, Oliveira JH, MacCagnan P. et al. Changes in serum thyroid hormones levels and their mechanisms during long-term growth hormone (GH) replacement therapy in GH deficient children. Clin Endocrinol (Oxf) 2000; 53: 183-189 71 Silva BC, Costa AG, Cusano NE. et al. Catabolic and anabolic actions of parathyroid hormone on the skeleton. J Endocrinol Invest 2011; 34: 801-810 72 Bellido T, Ali AA, Plotkin LI. et al. Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts. A putative explanation for why intermittent administration is needed for bone anabolism. J Biol Chem 2003; 278: 50259-50272 73 Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013; 19: 179-192 74 Joseph F, Ahmad AM, Ul-Haq M. et al. Effects of growth hormone administration on bone mineral metabolism, PTH sensitivity and PTH secretory rhythm in postmenopausal women with established osteoporosis. J Bone Miner Res 2008; 23: 721-729 75 Lombardi G, Di Somma C, Vuolo L. et al. Role of IGF-I on PTH effects on bone. J Endocrinol Invest 2010; 33: 22-26 76 Gasperi M, Cecconi E, Grasso L. et al. GH secretion is impaired in patients with primary hyperparathyroidism. J Clin Endocrinol Metab 2002; 87: 1961-1964 77 Liang Y, Duan L, Xiong J. et al. E2 regulates MMP-13 via targeting miR-140 in IL-1β-induced extracellular matrix degradation in human chondrocytes. Arthritis Res Ther 2016; 18: 105 78 Eghbali-Fatourechi G, Khosla S, Sanyal A. et al. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 2003; 111: 1221-1230 79 Leung KC, Johannsson G, Leong GM. et al. Estrogen regulation of growth hormone action. Endocr Rev 2004; 25: 693-721 80 Ho KY, Evans WS, Blizzard RM. et al. Effects of sex and age on the 24-hour profile of growth hormone secretion in man: importance of endogenous estradiol concentrations. J Clin Endocrinol Metab 1987; 64: 51-58 81 Southmayd EA, De Souza MJ. A summary of the influence of exogenous estrogen administration across the lifespan on the GH/IGF-1 axis and implications for bone health. Growth Horm IGF Res 2017; 32: 2-13 82 Weissberger AJ, Ho KK, Lazarus L. Contrasting effects of oral and transdermal routes of estrogen replacement therapy on 24-hour growth hormone (GH) secretion, insulin-like growth factor I, and GH-binding protein in postmenopausal women. J Clin Endocrinol Metab 1991; 72: 374-381 83 Tivesten A, Movérare-Skrtic S, Chagin A. et al. Additive protective effects of estrogen and androgen treatment on trabecular bone in ovariectomized rats. J Bone Miner Res 2004; 19: 1833-1839 84 Yu YM, Domené HM, Sztein J. et al. Developmental changes and differential regulation by testosterone and estradiol of growth hormone receptor expression in the rabbit. Eur J Endocrinol 1996; 135: 583-590 85 Hayes VY, Urban RJ, Jiang J. et al. Recombinant human growth hormone and recombinant human insulin-like growth factor I diminish the catabolic effects of hypogonadism in man: metabolic and molecular effects. J Clin Endocrinol Metab 2001; 86: 2211-2219 86 Conaway HH, Henning P, Lerner UH. Vitamin a metabolism, action, and role in skeletal homeostasis. Endocr Rev 2013; 34: 766-797 87 Masuyama R, Stockmans I, Torrekens S. et al. Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. J Clin Invest 2006; 116: 3150-3159 88 Sabbagh Y, Carpenter TO, Demay MB. Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of hypertrophic chondrocytes. Proc Natl Acad Sci U S A 2005; 102: 9637-9642 89 Maliza R, Fujiwara K, Tsukada T. et al. Effects of retinoic acid on growth hormone-releasing hormone receptor, growth hormone secretagogue receptor gene expression and growth hormone secretion in rat anterior pituitary cells. Endocr J 2016; 63: 555-561 90 Sagazio A, Piantedosi R, Alba M. et al. Vitamin A deficiency does not influence longitudinal growth in mice. Nutrition 2007; 23: 483-488 91 Ameri P, Giusti A, Boschetti M. et al. Vitamin D increases circulating IGF1 in adults: potential implication for the treatment of GH deficiency. Eur J Endocrinol 2013; 169: 767-772 92 Araya Z, Tang W, Wikvall K. Hormonal regulation of the human sterol 27-hydroxylase gene CYP27A1. Biochem J 2003; 372: 529-534 93 Pérez-Fernandez R, Alonso M, Segura C. et al. Vitamin D receptor gene expression in human pituitary gland. Life Sci 1997; 60: 35-42 94 Poudel SB, Ruff RR, Yildirim G. et al. Excess growth hormone triggers inflammation-associated arthropathy, subchondral bone loss, and arthralgia. Am J Pathol 2023; 193: 829-842 95 Poudel SB, Dixit M, Yildirim G. et al. Sexual dimorphic impact of adult-onset somatopause on life span and age-induced osteoarthritis. Aging Cell 2021; 20: e13427 96 Ekenstedt KJ, Sonntag WE, Loeser RF. et al. Effects of chronic growth hormone and insulin-like growth factor 1 deficiency on osteoarthritis severity in rat knee joints. Arthritis Rheum 2006; 54: 3850-3858 97 Dart AJ, Little CB, Hughes CE. et al. Recombinant equine growth hormone administration: effects on synovial fluid biomarkers and cartilage metabolism in horses. Equine Vet J 2003; 35: 302-307 98 Bail H, Klein P, Kolbeck S. et al. Systemic application of growth hormone enhances the early healing phase of osteochondral defects--a preliminary study in micropigs. Bone 2003; 32: 457-467 99 Le Vay D. Letter: intraarticular human growth in osteoarthritis. Lancet 1975; 2: 666-667 100 Ok SM, Kim JH, Kim JS. et al. Local injection of growth hormone for temporomandibular joint osteoarthritis. Yonsei Med J 2020; 61: 331-340
 

留言 (0)

沒有登入
gif