Horm Metab Res 2024; 56(11): 761-769
DOI: 10.1055/a-2411-9344
Lin Sun
1
Department of Endocrinology and Metabolism, The First
Hospital of Jilin University, Changchun, China (Ringgold ID: RIN117971)
,
Xiaokun Gang
1
Department of Endocrinology and Metabolism, The First
Hospital of Jilin University, Changchun, China (Ringgold ID: RIN117971)
,
Fei Li
1
Department of Endocrinology and Metabolism, The First
Hospital of Jilin University, Changchun, China (Ringgold ID: RIN117971)
,
Weiying Guo
1
Department of Endocrinology and Metabolism, The First
Hospital of Jilin University, Changchun, China (Ringgold ID: RIN117971)
,
Mengzhao Cui
1
Department of Endocrinology and Metabolism, The First
Hospital of Jilin University, Changchun, China (Ringgold ID: RIN117971)
,
Guixia Wang
1
Department of Endocrinology and Metabolism, The First
Hospital of Jilin University, Changchun, China (Ringgold ID: RIN117971)
› Author Affiliations
Funding Information
Youth Development Fund of the First Hospital of Jilin University |
04039890001 | National Natural Science Foundation of China |
82100871
› Further Information
Also available at
Buy Article Permissions and Reprints
Abstract
Osteoarthritis (OA), a chronic joint disease characterized by primary or secondary
degeneration of articular cartilage and bone dysplasia, is associated with various
risk factors and is the leading cause of musculoskeletal pain and disability,
severely impacting the quality of life. Growth hormone (GH), secreted by the
anterior pituitary gland, is essential in mediating the growth and development of
bone and cartilage. Reportedly, osteoarthritis increases, and the growth hormone
decreases with age. A negative correlation between GH and OA suggests that GH may be
related to the occurrence and development of OA. Considering that abnormal growth
hormone levels can lead to many diseases related to bone growth, we focus on the
relationship between GH and OA. In this review, we will explain the effects of GH on
the growth and deficiency of bone and cartilage based on the local pathological
changes of osteoarthritis. In addition, the potential feasibility of treating OA
with GH will be further explored and summarized.
Keywords
growth hormone -
cancer -
IGF-1 -
osteoarthritis -
hormone regulation
Publication History
Received: 23 January 2024
Accepted after revision: 01 September 2024
Article published online:
07 November 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1
Li J,
Zhang H,
Han Y.
et al.
Targeted and responsive biomaterials in osteoarthritis. Theranostics 2023; 13: 931-954
2
Yao Q,
Wu X,
Tao C.
et al.
Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 2023; 8: 56
3
Duan WL,
Zhang LN,
Bohara R.
et al.
Adhesive hydrogels in osteoarthritis: from design to application. Mil Med Res 2023; 10: 4
4
Mauras N,
Ross J,
Mericq V.
Management of growth disorders in puberty: GH, GnRHa, and aromatase inhibitors:
a clinical review. Endocr Rev 2023; 44: 1-13
5
Mazziotti G,
Lania AG,
Canalis E.
Skeletal disorders associated with the growth hormone-insulin-like growth factor
1 axis. Nat Rev Endocrinol 2022; 18: 353-365
6
Samvelyan HJ,
Huesa C,
Cui L.
et al.
The role of accelerated growth plate fusion in the absence of SOCS2 on
osteoarthritis vulnerability. Bone Joint Res 2022; 11: 162-170
7
Aguiar-Oliveira MH,
Bartke A.
Growth hormone deficiency: health and longevity. Endocr Rev 2019; 40: 575-601
8
Delpachitra SN,
Dimitroulis G.
Osteoarthritis of the temporomandibular joint: a review of aetiology and
pathogenesis. Br J Oral Maxillofac Surg 2022; 60: 387-396
9
Miao Y,
Chen Y,
Xue F.
et al.
Contribution of ferroptosis and GPX4's dual functions to osteoarthritis
progression. EBioMedicine 2022; 76: 103847
10
Du X,
Cai L,
Xie J.
et al.
The role of TGF-beta3 in cartilage development and osteoarthritis. Bone Res 2023; 11: 2
11
Bernabei I,
So A,
Busso N.
et al.
Cartilage calcification in osteoarthritis: mechanisms and clinical
relevance. Nat Rev Rheumatol 2023; 19: 10-27
12
Oliveira S,
Andrade R,
Silva FS.
et al.
Effects and mechanotransduction pathways of therapeutic ultrasound on healthy
and osteoarthritic chondrocytes: a systematic review of in vitro studies. Osteoarthritis Cartilage 2023; 31: 317-339
13
Zeng Z,
Zhou X,
Wang Y.
et al.
Mitophagy – a new target of bone disease. Biomolecules 2022; 12: 1420
14
Li B,
Guan G,
Mei L.
et al.
Pathological mechanism of chondrocytes and the surrounding environment during
osteoarthritis of temporomandibular joint. J Cell Mol Med 2021; 25: 4902-4911
15
Deng Z,
Chen X,
Lin Z.
et al.
The homeostasis of cartilage matrix remodeling and the regulation of
volume-sensitive ion channel. Aging Dis 2022; 13: 787-800
16
You B,
Zhou C,
Yang Y.
MSC-EVs alleviate osteoarthritis by regulating microenvironmental cells in the
articular cavity and maintaining cartilage matrix homeostasis. Ageing Res Rev 2023; 85: 101864
17
Peng Z,
Sun H,
Bunpetch V.
et al.
The regulation of cartilage extracellular matrix homeostasis in joint cartilage
degeneration and regeneration. Biomaterials 2021; 268: 120555
18
Hwang HS,
Kim HA.
Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int J Mol Sci 2015; 16: 26035-26054
19
Almonte-Becerril M,
Navarro-Garcia F,
Gonzalez-Robles A.
et al.
Cell death of chondrocytes is a combination between apoptosis and autophagy
during the pathogenesis of osteoarthritis within an experimental model. Apoptosis 2010; 15: 631-638
20
Muscaritoli M,
Arends J,
Bachmann P.
et al.
ESPEN practical guideline: clinical nutrition in cancer. Clin Nutr 2021; 40: 2898-2913
21
Hu Y,
Chen X,
Wang S.
et al.
Subchondral bone microenvironment in osteoarthritis and pain. Bone Res 2021; 9: 20
22
Ball HC,
Alejo AL,
Samson TK.
et al.
Epigenetic regulation of chondrocytes and subchondral bone in
osteoarthritis. Life (Basel) 2022; 12: 582
23
Ni R,
Guo XE,
Yan C.
et al.
Hemodynamic stress shapes subchondral bone in osteoarthritis: an emerging
hypothesis. J Orthop Translat 2022; 32: 85-90
24
Wu CJ,
Liu RX,
Huan SW.
et al.
Senescent skeletal cells cross-talk with synovial cells plays a key role in the
pathogenesis of osteoarthritis. Arthritis Res Ther 2022; 24: 59
25
Sanchez-Lopez E,
Coras R,
Torres A.
et al.
Synovial inflammation in osteoarthritis progression. Nat Rev Rheumatol 2022; 18: 258-275
26
Scanzello CR,
Goldring SR.
The role of synovitis in osteoarthritis pathogenesis. Bone 2012; 51: 249-257
27
Han L,
Tian H,
Guo X.
et al.
Regulation of ovarian function by growth hormone: potential intervention of
ovarian aging. Front Endocrinol (Lausanne) 2022; 13: 1072313
28
Li M.
The origination of growth hormone/insulin-like growth factor system: a story
from ancient basal chordate amphioxus. Front Endocrinol (Lausanne) 2022; 13: 825722
29
Hage C,
Salvatori R.
Growth hormone and aging. Endocrinol Metab Clin North Am 2023; 52: 245-257
30
Isidro ML,
Cordido F.
Growth hormone secretagogues. Comb Chem High Throughput Screen 2006; 9: 175-180
31
Wang JR,
Ahmed SF,
Gadegaard N.
et al.
Nanotopology potentiates growth hormone signalling and osteogenesis of
mesenchymal stem cells. Growth Horm IGF Res 2014; 24: 245-250
32
Komori T.
Regulation of osteoblast differentiation by Runx2. Adv Exp Med Biol 2010; 658: 43-49
33
Darvin P,
Joung YH,
Yang YM.
JAK2-STAT5B pathway and osteoblast differentiation. Jakstat 2013; 2: e24931
34
Yakar S,
Werner H,
Rosen CJ.
Insulin-like growth factors: actions on the skeleton. J Mol Endocrinol 2018; 61: T115-T137
35
Park-Min KH,
Lorenzo J.
Osteoclasts: Other functions. Bone 2022; 165: 116576
36
Chen X,
Wang Z,
Duan N.
et al.
Osteoblast-osteoclast interactions. Connect Tissue Res 2018; 59: 99-107
37
Jimi E,
Fei H,
Nakatomi C.
NF-κB signaling regulates physiological and pathological chondrogenesis. Int J Mol Sci 2019; 20: 6275
38
Choi MC,
Jo J,
Park J.
et al.
NF-κB Signaling pathways in osteoarthritic cartilage destruction. Cells 2019; 8: 734
39
De Luca F.
Regulatory role of NF-κB in growth plate chondrogenesis and its functional
interaction with Growth Hormone. Mol Cell Endocrinol 2020; 514: 110916
40
Renard E,
Porée B,
Chadjichristos C.
et al.
Sox9/Sox6 and Sp1 are involved in the insulin-like growth factor-I-mediated
upregulation of human type II collagen gene expression in articular
chondrocytes. J Mol Med (Berl) 2012; 90: 649-666
41
Ritchie ME,
Phipson B,
Wu D.
et al.
limma powers differential expression analyses for RNA-sequencing and microarray
studies. Nucleic Acids Res 2015; 43: e47
42
Wu L,
Huang X,
Li L.
et al.
Insights on biology and pathology of HIF-1α/-2α, TGFβ/BMP, Wnt/β-catenin, and
NF-κB pathways in osteoarthritis. Curr Pharm Des 2012; 18: 3293-3312
43
McKay TB,
Priyadarsini S,
Karamichos D.
Sex hormones, growth hormone, and the cornea. Cells 2022; 11: 224
44
Horesh EJ,
Chéret J,
Paus R.
Growth hormone and the human hair follicle. Int J Mol Sci 2021; 22: 13205
45
Ranke MB.
Short and long-term effects of growth hormone in children and adolescents with
GH deficiency. Front Endocrinol (Lausanne) 2021; 12: 720419
46
Chinoy A,
Murray PG.
Diagnosis of growth hormone deficiency in the paediatric and transitional
age. Best Pract Res Clin Endocrinol Metab 2016; 30: 737-747
47
Ricci Bitti S,
Franco M,
Albertelli M.
et al.
GH Replacement in the elderly: is it worth it?. Front Endocrinol (Lausanne) 2021; 12: 680579
48
Tritos NA.
Focus on growth hormone deficiency and bone in adults. Best Pract Res Clin Endocrinol Metab 2017; 31: 49-57
49
Anawalt BD,
Merriam GR.
Neuroendocrine aging in men. Andropause and somatopause. Endocrinol Metab Clin North Am 2001; 30: 647-669
50
Molitch ME,
Clemmons DR,
Malozowski S.
et al.
Evaluation and treatment of adult growth hormone deficiency: an Endocrine
Society clinical practice guideline. J Clin Endocrinol Metab 2011; 96: 1587-1609
51
Brocchi A,
Rebelos E,
Dardano A.
et al.
Effects of intermittent fasting on brain metabolism. Nutrients 2022; 14: 1275
52
Cignarelli A,
Genchi VA,
Le Grazie G.
et al.
Mini review: effect of GLP-1 receptor agonists and SGLT-2 inhibitors on the
growth hormone/IGF axis. Front Endocrinol (Lausanne) 2022; 13: 846903
53
Sims NA,
Clément-Lacroix P,
Da Ponte F.
et al.
Bone homeostasis in growth hormone receptor-null mice is restored by IGF-I but
independent of Stat5. J Clin Invest 2000; 106: 1095-1103
54
Zhao G,
Monier-Faugere MC,
Langub MC.
et al.
Targeted overexpression of insulin-like growth factor I to osteoblasts of
transgenic mice: increased trabecular bone volume without increased osteoblast
proliferation. Endocrinology 2000; 141: 2674-2682
55
Montaseri A,
Busch F,
Mobasheri A.
et al.
IGF-1 and PDGF-bb suppress IL-1β-induced cartilage degradation through
down-regulation of NF-κB signaling: involvement of Src/PI-3K/AKT pathway. PLoS One 2011; 6: e28663
56
Dixit M,
Poudel SB,
Yakar S.
Effects of GH/IGF axis on bone and cartilage. Mol Cell Endocrinol 2021; 519: 111052
57
Sher LB,
Woitge HW,
Adams DJ.
et al.
Transgenic expression of 11beta-hydroxysteroid dehydrogenase type 2 in
osteoblasts reveals an anabolic role for endogenous glucocorticoids in bone. Endocrinology 2004; 145: 922-929
58
Canalis E,
Delany AM.
Mechanisms of glucocorticoid action in bone. Ann N Y Acad Sci 2002; 966: 73-81
59
Olney RC.
Mechanisms of impaired growth: effect of steroids on bone and cartilage. Horm Res 2009; 72: 30-35
60
Kaufmann S,
Jones KL,
Wehrenberg WB.
et al.
Inhibition by prednisone of growth hormone (GH) response to GH-releasing hormone
in normal men. J Clin Endocrinol Metab 1988; 67: 1258-1261
61
Kritsch KR,
Murali S,
Adamo ML.
et al.
Dexamethasone decreases serum and liver IGF-I and maintains liver IGF-I mRNA in
parenterally fed rats. Am J Physiol Regul Integr Comp Physiol 2002; 282: R528-R536
62
Chrysis D,
Ritzen EM,
Sävendahl L.
Growth retardation induced by dexamethasone is associated with increased
apoptosis of the growth plate chondrocytes. J Endocrinol 2003; 176: 331-337
63
Jux C,
Leiber K,
Hügel U.
et al.
Dexamethasone impairs growth hormone (GH)-stimulated growth by suppression of
local insulin-like growth factor (IGF)-I production and expression of GH- and
IGF-I-receptor in cultured rat chondrocytes. Endocrinology 1998; 139: 3296-3305
64
Bechtold S,
Dalla Pozza R,
Schwarz HP.
et al.
Effects of growth hormone treatment in juvenile idiopathic arthritis: bone and
body composition. Horm Res 2009; 72: 60-64
65
Bassett JH,
Williams GR.
Role of thyroid hormones in skeletal development and bone maintenance. Endocr Rev 2016; 37: 135-187
66
Segni M,
Gorman CA.
The aftermath of childhood hyperthyroidism. J Pediatr Endocrinol Metab 2001; 14: 1277-1282 discussion 1297–1298
67
Mosekilde L,
Eriksen EF,
Charles P.
Effects of thyroid hormones on bone and mineral metabolism. Endocrinol Metab Clin North Am 1990; 19: 35-63
68
Wood DF,
Franklyn JA,
Docherty K.
et al.
The effect of thyroid hormones on growth hormone gene expression in vivo in
rats. J Endocrinol 1987; 112: 459-463
69
Valcavi R,
Dieguez C,
Zini M.
et al.
Influence of hyperthyroidism on growth hormone secretion. Clin Endocrinol (Oxf) 1993; 38: 515-522
70
Portes ES,
Oliveira JH,
MacCagnan P.
et al.
Changes in serum thyroid hormones levels and their mechanisms during long-term
growth hormone (GH) replacement therapy in GH deficient children. Clin Endocrinol (Oxf) 2000; 53: 183-189
71
Silva BC,
Costa AG,
Cusano NE.
et al.
Catabolic and anabolic actions of parathyroid hormone on the skeleton. J Endocrinol Invest 2011; 34: 801-810
72
Bellido T,
Ali AA,
Plotkin LI.
et al.
Proteasomal degradation of Runx2 shortens parathyroid hormone-induced
anti-apoptotic signaling in osteoblasts. A putative explanation for why
intermittent administration is needed for bone anabolism. J Biol Chem 2003; 278: 50259-50272
73
Baron R,
Kneissel M.
WNT signaling in bone homeostasis and disease: from human mutations to
treatments. Nat Med 2013; 19: 179-192
74
Joseph F,
Ahmad AM,
Ul-Haq M.
et al.
Effects of growth hormone administration on bone mineral metabolism, PTH
sensitivity and PTH secretory rhythm in postmenopausal women with established
osteoporosis. J Bone Miner Res 2008; 23: 721-729
75
Lombardi G,
Di Somma C,
Vuolo L.
et al.
Role of IGF-I on PTH effects on bone. J Endocrinol Invest 2010; 33: 22-26
76
Gasperi M,
Cecconi E,
Grasso L.
et al.
GH secretion is impaired in patients with primary hyperparathyroidism. J Clin Endocrinol Metab 2002; 87: 1961-1964
77
Liang Y,
Duan L,
Xiong J.
et al.
E2 regulates MMP-13 via targeting miR-140 in IL-1β-induced extracellular matrix
degradation in human chondrocytes. Arthritis Res Ther 2016; 18: 105
78
Eghbali-Fatourechi G,
Khosla S,
Sanyal A.
et al.
Role of RANK ligand in mediating increased bone resorption in early
postmenopausal women. J Clin Invest 2003; 111: 1221-1230
79
Leung KC,
Johannsson G,
Leong GM.
et al.
Estrogen regulation of growth hormone action. Endocr Rev 2004; 25: 693-721
80
Ho KY,
Evans WS,
Blizzard RM.
et al.
Effects of sex and age on the 24-hour profile of growth hormone secretion in
man: importance of endogenous estradiol concentrations. J Clin Endocrinol Metab 1987; 64: 51-58
81
Southmayd EA,
De Souza MJ.
A summary of the influence of exogenous estrogen administration across the
lifespan on the GH/IGF-1 axis and implications for bone health. Growth Horm IGF Res 2017; 32: 2-13
82
Weissberger AJ,
Ho KK,
Lazarus L.
Contrasting effects of oral and transdermal routes of estrogen replacement
therapy on 24-hour growth hormone (GH) secretion, insulin-like growth factor I,
and GH-binding protein in postmenopausal women. J Clin Endocrinol Metab 1991; 72: 374-381
83
Tivesten A,
Movérare-Skrtic S,
Chagin A.
et al.
Additive protective effects of estrogen and androgen treatment on trabecular
bone in ovariectomized rats. J Bone Miner Res 2004; 19: 1833-1839
84
Yu YM,
Domené HM,
Sztein J.
et al.
Developmental changes and differential regulation by testosterone and estradiol
of growth hormone receptor expression in the rabbit. Eur J Endocrinol 1996; 135: 583-590
85
Hayes VY,
Urban RJ,
Jiang J.
et al.
Recombinant human growth hormone and recombinant human insulin-like growth
factor I diminish the catabolic effects of hypogonadism in man: metabolic and
molecular effects. J Clin Endocrinol Metab 2001; 86: 2211-2219
86
Conaway HH,
Henning P,
Lerner UH.
Vitamin a metabolism, action, and role in skeletal homeostasis. Endocr Rev 2013; 34: 766-797
87
Masuyama R,
Stockmans I,
Torrekens S.
et al.
Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates
FGF23 production in osteoblasts. J Clin Invest 2006; 116: 3150-3159
88
Sabbagh Y,
Carpenter TO,
Demay MB.
Hypophosphatemia leads to rickets by impairing caspase-mediated apoptosis of
hypertrophic chondrocytes. Proc Natl Acad Sci U S A 2005; 102: 9637-9642
89
Maliza R,
Fujiwara K,
Tsukada T.
et al.
Effects of retinoic acid on growth hormone-releasing hormone receptor, growth
hormone secretagogue receptor gene expression and growth hormone secretion in
rat anterior pituitary cells. Endocr J 2016; 63: 555-561
90
Sagazio A,
Piantedosi R,
Alba M.
et al.
Vitamin A deficiency does not influence longitudinal growth in mice. Nutrition 2007; 23: 483-488
91
Ameri P,
Giusti A,
Boschetti M.
et al.
Vitamin D increases circulating IGF1 in adults: potential implication for the
treatment of GH deficiency. Eur J Endocrinol 2013; 169: 767-772
92
Araya Z,
Tang W,
Wikvall K.
Hormonal regulation of the human sterol 27-hydroxylase gene CYP27A1. Biochem J 2003; 372: 529-534
93
Pérez-Fernandez R,
Alonso M,
Segura C.
et al.
Vitamin D receptor gene expression in human pituitary gland. Life Sci 1997; 60: 35-42
94
Poudel SB,
Ruff RR,
Yildirim G.
et al.
Excess growth hormone triggers inflammation-associated arthropathy, subchondral
bone loss, and arthralgia. Am J Pathol 2023; 193: 829-842
95
Poudel SB,
Dixit M,
Yildirim G.
et al.
Sexual dimorphic impact of adult-onset somatopause on life span and age-induced
osteoarthritis. Aging Cell 2021; 20: e13427
96
Ekenstedt KJ,
Sonntag WE,
Loeser RF.
et al.
Effects of chronic growth hormone and insulin-like growth factor 1 deficiency on
osteoarthritis severity in rat knee joints. Arthritis Rheum 2006; 54: 3850-3858
97
Dart AJ,
Little CB,
Hughes CE.
et al.
Recombinant equine growth hormone administration: effects on synovial fluid
biomarkers and cartilage metabolism in horses. Equine Vet J 2003; 35: 302-307
98
Bail H,
Klein P,
Kolbeck S.
et al.
Systemic application of growth hormone enhances the early healing phase of
osteochondral defects--a preliminary study in micropigs. Bone 2003; 32: 457-467
99
Le Vay D.
Letter: intraarticular human growth in osteoarthritis. Lancet 1975; 2: 666-667
100
Ok SM,
Kim JH,
Kim JS.
et al.
Local injection of growth hormone for temporomandibular joint
osteoarthritis. Yonsei Med J 2020; 61: 331-340
留言 (0)