Loddenkemper R, Brönnecke M, Castell S, Diel R (2016) Tuberkulose und Rauchen. Pneumologie 70(01):17–22
Article CAS PubMed Google Scholar
Valdez-Miramontes CE, Trejo Martínez LA, Torres-Juárez F, Rodríguez Carlos A, Marin-Luévano SP, de Haro-Acosta JP, et al. (2019) Nicotine modulates molecules of the innate immune response in epithelial cells and macrophages during infection with M. tuberculosis. Clin Exp Immunol 199(2):230–243
Tang H, Zhang Y, Ma Y, Tang M, Shen D, Wang M (2018) Regulation of nicotine tolerance by quorum sensing and high efficiency of quorum quenching under nicotine stress in Pseudomonas aeruginosa PAO1. Front Cell Infect Microbiol 8 (88):1–11
McEachern EK, Hwang JH, Sladewski KM, Nicatia S, Dewitz C, Mathew DP et al (2015) Analysis of the effects of cigarette smoke on staphylococcal virulence phenotypes. Infect Immun 83(6):2443–2452
Article CAS PubMed PubMed Central Google Scholar
de Haro-Acosta J, Jacobo-Delgado YM, Rodriguez-Carlos A, Torres-Juarez F, Araujo Z, Serrano CJ et al (2021) Nicotine associates to intracellular Mycobacterium tuberculosis inducing genes related with resistance to antimicrobial peptides. Exp Lung Res 47(10):487–493
Miramontes CV, Rodriguez-Carlos A, Marin-Luevano SP, Trejo Martinez LA, de Haro AJ, Enciso-Moreno JA et al (2021) Nicotine promotes the intracellular growth of Mycobacterium tuberculosis in epithelial cells. Tuberculosis (Edinb) 127:102026
Article CAS PubMed Google Scholar
Rivas-Santiago B, de Haro-Acosta J, Carlos AR, Garcia-Hernandez MH, Serrano CJ, Gonzalez-Curiel I et al (2023) Nicotine promotes Mycobacterium tuberculosis H37Rv growth and overexpression of virulence genes. Microbiol Immunol 67(8):365–376
Article CAS PubMed Google Scholar
Mishra S, Mishra MB (2013) Tobacco: its historical, cultural, oral, and periodontal health association. J Int Soc Prevent Commun Dent 3(1):12–18
World Heath Organization Bulletin (2023). Tobacco
World Health Organization Bulletin (2013) Tobacco Consumption Epidemic
https://www.lung.org/quit-smoking/smoking-facts/whats-in-a-cigarette
Znyk M, Jurewicz J, Kaleta D (2021) Exposure to heated tobacco products and adverse health effects, a systematic review. Int J Environ Res Public Health 18(12):6651
Youlden DR, Cramb SM, Baade PD (2008) The international epidemiology of lung cancer: geographical distribution and secular trends. J Thorac Oncol : Off Publ Int Assoc Study Lung Cancer 3(8):819–831
Cha SR, Jang J, Park SM, Ryu SM, Cho SJ, Yang SR (2023) Cigarette smoke-induced respiratory response: insights into cellular processes and biomarkers. Antioxidants 12(6):1210
Goldfarbmuren KC, Jackson ND, Sajuthi SP, Dyjack N, Li KS, Rios CL et al (2020) Dissecting the cellular specificity of smoking effects and reconstructing lineages in the human airway epithelium. Nat Commun 11(1):2485
Article CAS PubMed PubMed Central Google Scholar
Berman ML, Zettler PJ, Jordt SE (2023) Synthetic nicotine: science, global legal landscape, and regulatory considerations. World Health Organ Tech Rep Ser 1047:35–60
PubMed PubMed Central Google Scholar
Cessation USDoHaHSS (2020) Smoking cessation: a report of the surgeon general
Shimada A, Iizuka H, Kawaguchi T, Yanagita T (1984) Pharmacodynamic effects of d-nicotine–comparison with l-nicotine. Nihon Yakurigaku Zasshi Folia Pharmacol Japon 84(1):1–10
Domingo-Vidal M, Whitaker-Menezes D, Martos-Rus C, Tassone P, Snyder CM, Tuluc M, Philp N, Curry J, Martinez-Outschoorn U (2019) Cigarette smoke induces metabolic reprogramming of the tumor stroma in head and neck squamous cell carcinoma. Mol Cancer Res 17(9):1893–1909
Article CAS PubMed PubMed Central Google Scholar
Murphy SE (2021) Biochemistry of nicotine metabolism and its relevance to lung cancer. J Biol Chem 296:100722
Article CAS PubMed PubMed Central Google Scholar
Oakes JM, Xu J, Morris TM, Fried ND, Pearson CS, Lobell TD et al (2020) Effects of chronic nicotine inhalation on systemic and pulmonary blood pressure and right ventricular remodeling in mice. Hypertension (Dallas, Tex: 1979) 75(5):1305–1314
Article CAS PubMed Google Scholar
Devi MR, Arvind T, Kumar PS (2013) ECG changes in smokers and non smokers—a comparative study. J Clin Diagn Res: JCDR 7(5):824–826
PubMed PubMed Central Google Scholar
Rivas-Santiago B, Contreras JL, Sada E, Hernández-Pando R (2008) The potential role of lung epithelial cells and β-defensins in experimental latent tuberculosis. Scand J Immunol 67(5):448–452
Article CAS PubMed Google Scholar
Leslie LJ, Vasanthi Bathrinarayanan P, Jackson P, Mabiala Ma Muanda JA, Pallett R, Stillman CJP et al (2017) A comparative study of electronic cigarette vapor extracts on airway-related cell lines in vitro. Inhalat Toxicol 29(3):126–136
Roxlau ET, Pak O, Hadzic S, Garcia-Castro CF, Gredic M, Wu CY, et al. (2023) Nicotine promotes e-cigarette vapour-induced lung inflammation and structural alterations. Eur Respir J 61(6):2200951
Miramontes CV, Rodríguez-Carlos A, Marin-Luévano SP, Martínez LAT, de Haro AJ, Enciso-Moreno JA et al (2021) Nicotine promotes the intracellular growth of Mycobacterium tuberculosis in epithelial cells. Tuberculosis 127:102026
Article CAS PubMed Google Scholar
Rivas-Santiago B, Schwander SK, Sarabia C, Diamond G, Klein-Patel ME, Hernandez-Pando R et al (2005) Human β-defensin 2 is expressed and associated with Mycobacterium tuberculosis during infection of human alveolar epithelial cells. Infect Immun 73(8):4505–4511
Article CAS PubMed PubMed Central Google Scholar
Rivas-Santiago B, Hernandez-Pando R, Carranza C, Juarez E, Contreras JL, Aguilar-Leon D et al (2008) Expression of cathelicidin LL-37 during Mycobacterium tuberculosis infection in human alveolar macrophages, monocytes, neutrophils, and epithelial cells. Infect Immun 76(3):935–941
Article CAS PubMed Google Scholar
Hosur V, Loring RH (2011) α4β2 nicotinic receptors partially mediate anti-inflammatory effects through Janus kinase 2-signal transducer and activator of transcription 3 but not calcium or cAMP signaling. Mol Pharmacol 79(1):167–174
Article CAS PubMed Google Scholar
Gomez AC, Rodriguez-Fernandez P, Villar-Hernandez R, Gibert I, Muriel-Moreno B, Lacoma A et al (2020) E-cigarettes: effects in phagocytosis and cytokines response against Mycobacterium tuberculosis. PLoS ONE 15(2):e0228919
Article CAS PubMed PubMed Central Google Scholar
Cook R, Davidson P, Martin R (2019) E-cigarettes helped more smokers quit than nicotine replacement therapy. BMJ (Clin Res ed) 365:l2036
Grana R, Benowitz N, Glantz SA (2014) E-cigarettes: a scientific review. Circulation 129(19):1972–1986
Article PubMed PubMed Central Google Scholar
Scott A, Lugg ST, Aldridge K, Lewis KE, Bowden A, Mahida RY et al (2018) Pro-inflammatory effects of e-cigarette vapour condensate on human alveolar macrophages. Thorax 73(12):1161–1169
Divangahi M, Mostowy S, Coulombe FO, Kozak R, Guillot LC, Veyrier FDR et al (2008) NOD2-deficient mice have impaired resistance to Mycobacterium tuberculosis infection through defective innate and adaptive immunity. J Immunol 181(10):7157–7165
Article CAS PubMed Google Scholar
Drennan MB, Nicolle D, Quesniaux VJ, Jacobs M, Allie N, Mpagi J et al (2004) Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection. Am J Pathol 164(1):49–57
Article CAS PubMed PubMed Central Google Scholar
Reiling N, Hölscher C, Fehrenbach A, Kröger S, Kirschning CJ, Goyert S et al (2002) Cutting edge: toll-like receptor (TLR) 2-and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J Immunol 169(7):3480–3484
Article CAS PubMed Google Scholar
Valdez-Miramontes C, Trejo Martínez L, Torres-Juárez F, Rodríguez Carlos A, Marin-Luévano S, de Haro-Acosta J et al (2020) Nicotine modulates molecules of the innate immune response in epithelial cells and macrophages during infection with M. tuberculosis. Clin Exp Immunol 199(2):230–243
Article CAS PubMed Google Scholar
Rocha-Ramírez LM, Estrada-García I, López-Marín LM, Segura-Salinas E, Méndez-Aragón P, Van Soolingen D et al (2008) Mycobacterium tuberculosis lipids regulate cytokines, TLR-2/4 and MHC class II expression in human macrophages. Tuberculosis 88(3):212–220
Sun Y, Li Q, Gui H, Xu D-P, Yang Y-L, Su D-F et al (2013) MicroRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines. Cell Res 23(11):1270–1283
留言 (0)