Chari, R. & Church, G. M. Beyond editing to writing large genomes. Nat. Rev. Genet. 18, 749 (2017).
Article CAS PubMed PubMed Central Google Scholar
Zhang, W., Mitchell, L. A., Bader, J. S. & Boeke, J. D. Synthetic genomes. Annu. Rev. Biochem. 89, 77–101 (2020).
Article CAS PubMed Google Scholar
Shalem, O., Sanjana, N. E. & Zhang, F. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 16, 299–311 (2015).
Article CAS PubMed PubMed Central Google Scholar
Coradini, A. L. V., Hull, C. B. & Ehrenreich, I. M. Building genomes to understand biology. Nat. Commun. 11, 6177 (2020).
Article CAS PubMed PubMed Central Google Scholar
Agarwal, K. L. et al. Total synthesis of the gene for an alanine transfer ribonucleic acid from yeast. Nature 227, 27–34 (1970).
Article CAS PubMed Google Scholar
Khorana, H. G. et al. Total synthesis of the structural gene for an alanine transfer ribonucleic acid from yeast. J. Mol. Biol. 72, 209–217 (1972).
Article CAS PubMed Google Scholar
Jackson, D. A., Symons, R. H. & Berg, P. Biochemical method for inserting new genetic information into DNA of simian virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc. Natl Acad. Sci. USA 69, 2904–2909 (1972).
Article CAS PubMed PubMed Central Google Scholar
Cello, J., Paul, A. V. & Wimmer, E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science 297, 1016–1018 (2002).
Article CAS PubMed Google Scholar
Smith, H. O., Hutchison, C. A., Pfannkoch, C. & Venter, J. C. Generating a synthetic genome by whole genome assembly: φX174 bacteriophage from synthetic oligonucleotides. Proc. Natl Acad. Sci. USA 100, 15440–15445 (2003).
Article CAS PubMed PubMed Central Google Scholar
Chan, L. Y., Kosuri, S. & Endy, D. Refactoring bacteriophage T7. Mol. Syst. Biol. 1, 2005.0018 (2005). This study introduces the principle of refactoring to synthetic genomics. The authors applied bespoke design rules to reorganize the T7 bacteriophage genome in one of the first instances of whole-genome redesign.
Article PubMed PubMed Central Google Scholar
Blight, K. J., Kolykhalov, A. A. & Rice, C. M. Efficient initiation of HCV RNA replication in cell culture. Science 290, 1972–1974 (2000).
Article CAS PubMed Google Scholar
Oldfield, L. M. et al. Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods. Proc. Natl Acad. Sci. USA 114, E8885–E8894 (2017).
Article CAS PubMed PubMed Central Google Scholar
Yount, B. et al. Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc. Natl Acad. Sci. USA 100, 12995–13000 (2003).
Article CAS PubMed PubMed Central Google Scholar
Thi Nhu Thao, T. et al. Rapid reconstruction of SARS-CoV-2 using a synthetic genomics platform. Nature 582, 561–565 (2020).
Noyce, R. S., Lederman, S. & Evans, D. H. Construction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments. PLoS One 13, e0188453 (2018).
Article PubMed PubMed Central Google Scholar
Dormitzer, P. R. et al. Synthetic generation of influenza vaccine viruses for rapid response to pandemics. Sci. Transl. Med. 5, 185ra68 (2013).
Menachery, V. D. et al. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat. Med. 21, 1508–1513 (2015).
Article CAS PubMed PubMed Central Google Scholar
Venter, J. C., Glass, J. I., Hutchison, C. A. & Vashee, S. Synthetic chromosomes, genomes, viruses, and cells. Cell 185, 2708–2724 (2022).
Article CAS PubMed PubMed Central Google Scholar
Ando, H., Lemire, S., Pires, D. P. & Lu, T. K. Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst. 1, 187–196 (2015).
Article CAS PubMed PubMed Central Google Scholar
Gibson, D. G. et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220 (2008). This study demonstrated the bottom-up chemical synthesis and assembly in yeast of a 532 kb M. genitalium genome.
Article CAS PubMed Google Scholar
Gibson, D. G. et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329, 52–56 (2010). This seminal work presents the bottom-up chemical synthesis, assembly and delivery of a 1.08-Mb M. mycoides genome.
Article CAS PubMed Google Scholar
Hutchison, C. A. et al. Design and synthesis of a minimal bacterial genome. Science 351, aad6253 (2016). This study presents the bottom-up construction of the heavily minimized 531 kb JCVI-syn3.0 genome.
Fredens, J. et al. Total synthesis of Escherichia coli with a recoded genome. Nature 569, 514–518 (2019). This study presents the bottom-up construction of Syn61, a recoded E. coli strain where codon substitutions yield a 61-codon genome. This codon compression has already been leveraged for non-canonical amino acid incorporation and stringent biocontainment.
Article CAS PubMed PubMed Central Google Scholar
Ostrov, N. et al. Design, synthesis, and testing toward a 57-codon genome. Science 353, 819–822 (2016).
Article CAS PubMed Google Scholar
Lajoie, M. J. et al. Genomically recoded organisms expand biological functions. Science 342, 357–360 (2013). This article details the construction of a genomically recoded E. coli strain in which all TAG codons have been converted to TAA.
Article CAS PubMed PubMed Central Google Scholar
Nyerges, A. et al. Synthetic genomes unveil the effects of synonymous recoding. Preprint at bioRxiv https://doi.org/10.1101/2024.06.16.599206 (2024).
Article PubMed PubMed Central Google Scholar
Richardson, S. M. et al. Design of a synthetic yeast genome. Science 355, 1040–1044 (2017). This article describes the design of the Sc2.0 synthetic yeast genome and presents Biostudio, a CAD tool for eukaryotic genome design.
Article CAS PubMed Google Scholar
Schindler, D. et al. Design, construction, and functional characterization of a tRNA neochromosome in yeast. Cell 186, 5237–5253 (2023). This article describes the design, assembly and characterization of the Sc2.0 tRNA neochromosome, containing all 275 native S. cerevisiae tRNA genes.
Article CAS PubMed Google Scholar
Zhao, Y. et al. Debugging and consolidating multiple synthetic chromosomes reveals combinatorial genetic interactions. Cell 186, 5220–5236.e16 (2023). This article details the generation of the syn6.5 yeast strain, where 6.5 synthetic chromosomes were compiled and debugged within a single cell. This study also reports the generation of syn7.5; however, characterization is incomplete.
Article CAS PubMed Google Scholar
Annaluru, N. et al. Total synthesis of a functional designer eukaryotic chromosome. Science 344, 55–58 (2014). This work presents synIII, the first synthetic eukaryotic chromosome, constructed as part of the Sc2.0 project.
留言 (0)