Genetic regulation of TERT splicing contributes to reduced or elevated cancer risk by altering cellular longevity and replicative potential

Abstract

The chromosome 5p15.33 region, which encodes telomerase reverse transcriptase (TERT), harbors multiple germline variants identified by genome-wide association studies (GWAS) as risk for some cancers but protective for others. We characterized a variable number tandem repeat within TERT intron 6 (VNTR6-1, 38-bp repeat unit) and observed a strong association between VNTR6-1 alleles (Short: 24-27 repeats, Long: 40.5-66.5 repeats) and GWAS signals within TERT intron 4. Specifically, VNTR6-1 fully explained the GWAS signals for rs2242652 and partially for rs10069690. VNTR6-1, rs10069690 and their haplotypes were associated with multi-cancer risk and age-related telomere shortening. Both variants reduce TERT expression through alternative splicing and nonsense-mediated decay: rs10069690-T increases intron 4 retention and VNTR6-1-Long expands a polymorphic G quadruplex (G4, 35-113 copies) within intron 6. Treatment with G4-stabilizing ligands decreased the fraction of the functional telomerase-encoding TERT full-length isoform, whereas CRISPR/Cas9 deletion of VNTR6-1 increased this fraction and apoptosis while reducing cell proliferation. Thus, VNTR6-1 and rs10069690 regulate the expression and splicing of TERT transcripts encoding both functional and nonfunctional telomerase. Altered TERT isoform ratios might modulate cellular longevity and replicative potential at homeostasis and in response to environmental factors, thus selectively contributing to the reduced or elevated cancer risk conferred by this locus.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

The work was supported by the Intramural Research Program (IRP) of the Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), US National Institutes of Health (NIH).

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

The study used openly available human data that were originally located at UK Biobank - https://www.ukbiobank.ac.uk/ and PLCO: https://cdas.cancer.gov/plco/ All study participants or their guardians provided informed consent for participation in the CIBMTR Research Database and Research Sample Repository Protocols (NCT01166009 and NCT00495300). The use of the data and samples were approved by the National Marrow Donor Program Institutional Review Board.

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.

Yes

Data Availability

All data produced in the present study are contained in the manuscript or available upon reasonable request to the authors.

留言 (0)

沒有登入
gif