Bhayana R (2024) Chatbots and large language models in radiology: a practical primer for clinical and research applications. Radiology 310:e232756. https://doi.org/10.1148/radiol.232756
Elkassem AA, Smith AD (2023) Potential use cases for ChatGPT in radiology reporting. AJR Am J Roentgenol 221:373–376. https://doi.org/10.2214/AJR.23.29198
European Society of Radiology (ESR) (2019) What the radiologist should know about artificial intelligence–an ESR white paper. Insights Imaging 10:44. https://doi.org/10.1186/s13244-019-0738-2
Vaswani A, Shazeer N, Parmar N, et al (2023) Attention is all you need. https://doi.org/10.48550/arXiv.1706.03762
OpenAI ChatGPT. https://openai.com/chatgpt/. Accessed 13 Jul 2024
Rahsepar AA, Tavakoli N, Kim GHJ et al (2023) How AI responds to common lung cancer questions: ChatGPT vs google bard. Radiology 307:e230922. https://doi.org/10.1148/radiol.230922
Biswas S, Khan S, Awal SS (2024) Can ChatGPT write radiology reports? Chin J Acad Radiol. https://doi.org/10.1007/s42058-023-00132-x
Hartung MP, Bickle IC, Gaillard F, Kanne JP (2020) How to create a great radiology report. Radiographics 40:1658–1670. https://doi.org/10.1148/rg.2020200020
Grewal H, Dhillon G, Monga V et al (2023) Radiology gets chatty: the ChatGPT saga unfolds. Cureus 15:e40135. https://doi.org/10.7759/cureus.40135
Article PubMed PubMed Central Google Scholar
Nakaura T, Yoshida N, Kobayashi N et al (2024) Preliminary assessment of automated radiology report generation with generative pre-trained transformers: comparing results to radiologist-generated reports. Jpn J Radiol 42:190–200. https://doi.org/10.1007/s11604-023-01487-y
Article CAS PubMed Google Scholar
Bosmans JML, Weyler JJ, De Schepper AM, Parizel PM (2011) The radiology report as seen by radiologists and referring clinicians: results of the COVER and ROVER surveys. Radiology 259:184–195. https://doi.org/10.1148/radiol.10101045
Adams LC, Truhn D, Busch F et al (2023) Leveraging GPT-4 for post hoc transformation of free-text radiology reports into structured reporting: a multilingual feasibility study. Radiology 307:e230725. https://doi.org/10.1148/radiol.230725
Hasani AM, Singh S, Zahergivar A et al (2023) Evaluating the performance of generative pre-trained transformer-4 (GPT-4) in standardizing radiology reports. Eur Radiol. https://doi.org/10.1007/s00330-023-10384-x
Mallio CA, Sertorio AC, Bernetti C, BeomonteZobel B (2023) Large language models for structured reporting in radiology: performance of GPT-4, ChatGPT-3.5, perplexity and bing. Radiol Med 128:808–812. https://doi.org/10.1007/s11547-023-01651-4
Mallio CA, Bernetti C, Sertorio AC, BeomonteZobel B (2023) Large language models and structured reporting: never stop chasing critical thinking. Radiol Med 128:1445–1446. https://doi.org/10.1007/s11547-023-01711-9
Mallio CA, Sertorio AC, Bernetti C, BeomonteZobel B (2023) Radiology, structured reporting and large language models: who is running faster? Radiol Med 128:1443–1444. https://doi.org/10.1007/s11547-023-01689-4
Mallio CA, Bernetti C, Sertorio AC, Zobel BB (2024) ChatGPT in radiology structured reporting: analysis of ChatGPT-3.5 Turbo and GPT-4 in reducing word count and recalling findings. Quant Imaging Med Surg 14:2096–2102. https://doi.org/10.21037/qims-23-1300
Article PubMed PubMed Central Google Scholar
Bosbach WA, Senge JF, Nemeth B et al (2024) Ability of ChatGPT to generate competent radiology reports for distal radius fracture by use of RSNA template items and integrated AO classifier. Curr Probl Diagn Radiol 53:102–110. https://doi.org/10.1067/j.cpradiol.2023.04.001
Russe MF, Fink A, Ngo H et al (2023) Performance of ChatGPT, human radiologists, and context-aware ChatGPT in identifying AO codes from radiology reports. Sci Rep 13:14215. https://doi.org/10.1038/s41598-023-41512-8
Article CAS PubMed PubMed Central Google Scholar
Sasaki F, Tatekawa H, Mitsuyama Y et al (2024) Bridging language and stylistic barriers in IR standardized reporting: enhancing translation and structure using ChatGPT-4. J Vasc Interv Radiol 35:472-475.e1. https://doi.org/10.1016/j.jvir.2023.11.014
Parillo M, Mallio CA, Van der Molen AJ et al (2024) The role of gadolinium-based contrast agents in magnetic resonance imaging structured reporting and data systems (RADS). MAGMA 37:15–25. https://doi.org/10.1007/s10334-023-01113-y
Article CAS PubMed Google Scholar
Parillo M, van der Molen AJ, Asbach P et al (2023) The role of iodinated contrast media in computed tomography structured reporting and data systems (RADS): a narrative review. Quant Imaging Med Surg 13:7621–7631. https://doi.org/10.21037/qims-23-603
Article PubMed PubMed Central Google Scholar
Cao JJ, Kwon DH, Ghaziani TT et al (2023) Accuracy of information provided by ChatGPT regarding liver cancer surveillance and diagnosis. AJR Am J Roentgenol 221:556–559. https://doi.org/10.2214/AJR.23.29493
Sievert M, Conrad O, Mueller SK et al (2023) Risk stratification of thyroid nodules: assessing the suitability of ChatGPT for text-based analysis. Am J Otolaryngol 45:104144. https://doi.org/10.1016/j.amjoto.2023.104144
Jiang H, Xia S, Yang Y et al (2024) Transforming free-text radiology reports into structured reports using ChatGPT: a study on thyroid ultrasonography. Eur J Radiol 175:111458. https://doi.org/10.1016/j.ejrad.2024.111458
Wang Z, Zhang Z, Traverso A et al (2024) Assessing the role of GPT-4 in thyroid ultrasound diagnosis and treatment recommendations: enhancing interpretability with a chain of thought approach. Quant Imaging Med Surg 14:1602–1615. https://doi.org/10.21037/qims-23-1180
Article PubMed PubMed Central Google Scholar
Cozzi A, Pinker K, Hidber A et al (2024) BI-RADS category assignments by GPT-35, GPT-4, and Google Bard: a multilanguage study. Radiology 311:e232133. https://doi.org/10.1148/radiol.232133
Chung EM, Zhang SC, Nguyen AT et al (2023) Feasibility and acceptability of ChatGPT generated radiology report summaries for cancer patients. Digit Health 9:20552076231221620. https://doi.org/10.1177/20552076231221620
Article PubMed PubMed Central Google Scholar
Salam B, Kravchenko D, Nowak S et al (2024) Generative Pre-trained Transformer 4 makes cardiovascular magnetic resonance reports easy to understand. J Cardiovasc Magn Reson 26:101035. https://doi.org/10.1016/j.jocmr.2024.101035
Article PubMed PubMed Central Google Scholar
Schmidt S, Zimmerer A, Cucos T et al (2024) Simplifying radiologic reports with natural language processing: a novel approach using ChatGPT in enhancing patient understanding of MRI results. Arch Orthop Trauma Surg 144:611–618. https://doi.org/10.1007/s00402-023-05113-4
Jeblick K, Schachtner B, Dexl J et al (2023) ChatGPT makes medicine easy to swallow: an exploratory case study on simplified radiology reports. Eur Radiol. https://doi.org/10.1007/s00330-023-10213-1
Article PubMed PubMed Central Google Scholar
Tepe M, Emekli E (2024) Decoding medical jargon: the use of AI language models (ChatGPT-4, BARD, microsoft copilot) in radiology reports. Patient Educ Couns 126:108307. https://doi.org/10.1016/j.pec.2024.108307
Sarangi PK, Lumbani A, Swarup MS et al (2023) Assessing ChatGPT’s proficiency in simplifying radiological reports for healthcare professionals and patients. Cureus 15:e50881.
留言 (0)