Diagnostic value of TRIM22 in diabetic kidney disease and its mechanism

H.-T. Cheng, X. Xu, P.S. Lim, K.-Y. Hung, Worldwide epidemiology of diabetes-related end-stage renal disease, 2000–2015. Diab. Care 44(1), 89–97 (2021). https://doi.org/10.2337/dc20-1913

Article  Google Scholar 

S. Gupta, M. Dominguez, L. Golestaneh, Diabetic kidney disease. Med. Clin. North Am. 107(4), 689–705 (2023). https://doi.org/10.1016/j.mcna.2023.03.004

Article  PubMed  Google Scholar 

S.C. Naaman, G.L. Bakris, Diabetic nephropathy: Update on pillars of therapy slowing progression. Diab. Care 46(9), 1574–86 (2023). https://doi.org/10.2337/dci23-0030

Article  CAS  Google Scholar 

J. Chen, Q. Liu, J. He, Y. Li, Immune responses in diabetic nephropathy: Pathogenic mechanisms and therapeutic target. Front. Immunol. 13 (2022). https://doi.org/10.3389/fimmu.2022.958790

H.-J. Anders, T.B. Huber, B. Isermann, M. Schiffer, CKD in diabetes: diabetic kidney disease versus nondiabetic kidney disease. Nat. Rev. Nephrol. 14(6), 361–77 (2018). https://doi.org/10.1038/s41581-018-0001-y

Article  CAS  PubMed  Google Scholar 

R.E. Gilbert, Proximal tubulopathy: Prime mover and key therapeutic target in diabetic kidney disease. Diabetes 66(4), 791–800 (2017). https://doi.org/10.2337/db16-0796

Article  CAS  PubMed  Google Scholar 

H.L. Zhou, Z. Mu, Y. Yang Shi, Identification of a novel immune landscape signature as effective diagnostic markers related to immune cell infiltration in diabetic nephropathy, Front. Immunol. 14 (2023). https://doi.org/10.3389/fimmu.2023.1113212

C. Zheng, L. Huang, W. Luo, W. Yu, X. Hu, X. Guan, Y. Cai, C. Zou, H. Yin, Xu Z., G. Liang, Y. Wang, Inhibition of STAT3 in tubular epithelial cells prevents kidney fibrosis and nephropathy in STZ-induced diabetic mice, Cell Death Dis. 10 (11) (2019). https://doi.org/10.1038/s41419-019-2085-0

N. Jiang, H. Zhao, Y. Han, L., S. Xiong, L. Zeng, Y. Xiao, L. Wei, X. Xiong, P. Gao, M. Yang, Y. Liu, L. Sun, HIF‐1α ameliorates tubular injury in diabetic nephropathy via HO‐1–mediated control of mitochondrial dynamics, Cell Proliferation 53 (11) (2020). https://doi.org/10.1111/cpr.12909

A.L. Kogot-Levin, Y. Hinden, T. Riahi, B. Israeli, E. Tirosh, E. B. Cerasi, J. Mizrachi, O. Tam, G. Mosenzon Leibowitz, Proximal tubule mTORC1 is a central player in the pathophysiology of diabetic nephropathy and its correction by SGLT2 inhibitors, Cell Rep. 32 (4) (2020). https://doi.org/10.1016/j.celrep.2020.107954

X. Wen, D.J. Klionsky, At a glance: A history of autophagy and cancer. Semin. Cancer Biol. 66, 3–11 (2020). https://doi.org/10.1016/j.semcancer.2019.11.005

Article  PubMed  Google Scholar 

C.D., M.P. Gonzalez, C. Carro Negueruela, R. Nicora Santamarina, M.I. Resnik, Vaccaro, Autophagy dysregulation in diabetic kidney disease: From pathophysiology to pharmacological interventions, Cells. 10 (9) (2021). https://doi.org/10.3390/cells10092497

M.J. Livingston, S. Shu, Y. Fan, Z. Li, Q. Jiao, X.-M. Yin, M.A. Venkatachalam, Z. Dong, Tubular cells produce FGF2 via autophagy after acute kidney injury leading to fibroblast activation and renal fibrosis. Autophagy 19(1), 256–77 (2022). https://doi.org/10.1080/15548627.2022.2072054

Article  CAS  PubMed  PubMed Central  Google Scholar 

Y. Ren, H. Dong, R. Jin, J. Jiang, X. Zhang, TRIM22 actives PI3K/Akt/mTOR pathway to promote psoriasis through enhancing cell proliferation and inflammation and inhibiting autophagy. Cutan. Ocul. Toxicol. 41(4), 304–9 (2022). https://doi.org/10.1080/15569527.2022.2127750

Article  CAS  PubMed  Google Scholar 

H.H. Heo, M.S. Park, J. Lee, J. Kim, S.-Y. Kim, S. K. Jung, S. Kim, J. Lee Chang, TRIM22 facilitates autophagosome-lysosome fusion by mediating the association of GABARAPs and PLEKHM1, Autophagy. 1-16 (2023). https://doi.org/10.1080/15548627.2023.2287925

I. Pagani, G. Poli, E. Vicenzi, TRIM22. A multitasking antiviral factor, Cells 10 (8) (2021). https://doi.org/10.3390/cells10081864

Y. Yang, X. Hao, J. Zhang, T. Gao, M. Huo, W. Liu, T. Hu, T. Ma, B. Yuan, M. Zhang, X. Teng, H. Yu, W. Huang, Y. Wang, The E3 ligase TRIM22 functions as a tumor suppressor in breast cancer by targeting CCS for proteasomal degradation to inhibit STAT3 signaling. Cancer Lett. 600, 217157 (2024). https://doi.org/10.1016/j.canlet.2024.217157

Article  CAS  PubMed  Google Scholar 

D.H.J. Kang, Y. Hwang, J. Y. Baek, K. Sung, H.J. Kim, Y.-G. Park, Y.-N. Ko, J.-S. Kim Lee, TRIM22 induces cellular senescence by targeting PHLPP2 in hepatocellular carcinoma, Cell Death Dis. 15 (1) (2024). https://doi.org/10.1038/s41419-024-06427-w

N. Wu, Gou X., Hu P., Chen Y., Ji J., Wang Y., Zuo L., Mechanism of autophagy induced by activation of the AMPK/ERK/mTOR signaling pathway after TRIM22-mediated DENV-2 infection of HUVECs, Virology J. 19 (1) (2022). https://doi.org/10.1186/s12985-022-01932-w

B. Ye, Z. Lu, Role of TRIM22 in ulcerative colitis and its underlying mechanisms, Mol. Med. Rep. 26 (2) (2022). https://doi.org/10.3892/mmr.2022.12765

F. Zhang, M. Xia, J. Jiang, S. Wang, Q. Zhao, C. Yu, J. Yu, D. Xian, X. Li, L. Zhang, Y. Liu, M. Peng, Machine learning and bioinformatics to identify 8 autophagy-related biomarkers and construct gene regulatory networks in dilated cardiomyopathy, Sc. Rep. 12 (1) (2022). https://doi.org/10.1038/s41598-022-19027-5

H. Jin, B. Xia, J. Wang, S. Qi, W. Jing, K. Deng, J. Yang, A novel lipid metabolism and endoplasmic reticulum stress-related risk model for predicting immune infiltration and prognosis in colorectal cancer, Int. J. Mol. Sci. 24 (18) (2023). https://doi.org/10.3390/ijms241813854

T.W.C. Tervaert, A.L. Mooyaart, K. Amann, A.H. Cohen, H.T. Cook, C.B. Drachenberg, F. Ferrario, A.B. Fogo, M. Haas, E. De Heer, K. Joh, L.H. Noël, J. Radhakrishnan, S.V. Seshan, I.M. Bajema, J.A. Bruijn, Pathologic classification of diabetic nephropathy. J. Am. Soc. Nephrol. 21(4), 556–63 (2010). https://doi.org/10.1681/asn.2010010010

Article  PubMed  Google Scholar 

M. Shimizu, K. Furuichi, S. Kitajima, T. Toyama, M. Oshima, H. Ogura, K. Sato, S. Nakagawa, Y. Yamamura, T. Miyagawa, A. Hara, Y. Iwata, N. Sakai, K. Kitagawa, M. Yoshimura, H. Yokoyama, T. Wada, Impact of the relationship between hemoglobin levels and renal interstitial fibrosis on long-term outcomes in type 2 diabetes with biopsy-proven diabetic nephropathy, BMC Nephrol. 22 (1) (2021). https://doi.org/10.1186/s12882-021-02510-y

J.X. Wang, M. Wang, J. Wang, Y. Wang, X. Wu Qi, Clinical significance of Interleukin 17 receptor E in diabetic nephropathy, Int. Immunopharmacol. 120 (2023). https://doi.org/10.1016/j.intimp.2023.110324

A. Petersmann, D. Müller-Wieland, U.A. Müller, R. Landgraf, M. Nauck, G. Freckmann, L. Heinemann, E. Schleicher, Definition, classification and diagnosis of diabetes mellitus. Exp. Clin. Endocrinol. Diab. 127(S 01), S1–S7 (2019). https://doi.org/10.1055/a-1018-9078

Article  CAS  Google Scholar 

G.S. Handelman, H.K. Kok, R.V. Chandra, A.H. Razavi, M.J. Lee, H. Asadi, eDoctor: machine learning and the future of medicine. J. Intern. Med. 284(6), 603–19 (2018). https://doi.org/10.1111/joim.12822

Article  CAS  PubMed  Google Scholar 

H.Y. Han H. Chen, W. Yang, S. Cheng, Y. Zhang, Q. Liu, D. Liu, Liu G. Yang, K. Li, Identification and verification of diagnostic biomarkers for glomerular injury in diabetic nephropathy based on machine learning algorithms, Front. Endocrinol. 13 (2022). https://doi.org/10.3389/fendo.2022.876960

X. Zhang, Chao P., Jiang H., Yang S., Muhetaer G., Zhang J., Song X., Lu C., Integration of three machine learning algorithms identifies characteristic RNA binding proteins linked with diagnosis, immunity and pyroptosis of IgA nephropathy, Front. Genetics. 13 (2022). https://doi.org/10.3389/fgene.2022.975521

Y. Zhong, W. Zhang, X. Hong, Z. Zeng, Y. Chen, S. Liao, W. Cai, Y. Xu, G. Wang, D. Liu, D. Tang, Y. Dai, Screening biomarkers for systemic lupus erythematosus based on machine learning and exploring their expression correlations with the ratios of various immune cells, Front Immunol. 13 (2022). https://doi.org/10.3389/fimmu.2022.873787

Q. Zhang, Y. Jiao, N. Ma, L. Zhang, Y. Song, G. Schmalz, Identification of endoplasmic reticulum stress-related biomarkers of periodontitis based on machine learning: A bioinformatics analysis. Dis. Markers 2022, 1–18 (2022). https://doi.org/10.1155/2022/8611755

Article  CAS  Google Scholar 

D.J. Kelly, A. Stein-Oakley, Y. Zhang, L. Wassef, J. Maguire, T. Koji, N. Thomson, J.L. Wilkinson-Berka, R.E. Gilbert, Fas-induced apoptosis is a feature of progressive diabetic nephropathy in transgenic (mRen-2)27 rats: attenuation with renin-angiotensin blockade. Nephrol. (Carlton) 9(1), 7–13 (2004). https://doi.org/10.1111/j.1440-1797.2003.00227.x

Article  CAS  Google Scholar 

A. Ortiz, C. Lorz, J. Egido, The Fas ligand/Fas system in renal injury. Nephrol. Dial. Transpl. 14(8), 1831–4 (1999). https://doi.org/10.1093/ndt/14.8.1831

Article  CAS  Google Scholar 

J. Li, F. Ma, Polo-like kinase 2 is identified in hypertrophy, extracellular matrix accumulation, and oxidative stress of mesangial cells in diabetic nephropathy through p38-MAPK signaling. Ann. Clin. Lab Sci. 53(2), 192–9 (2023)

CAS  PubMed  Google Scholar 

R.-H. Tu, S.-Z. Wu, Z.-N. Huang, Q. Zhong, Y.-H. Ye, C.-H. Zheng, J.-W. Xie, J.-B. Wang, J.-X. Lin, Q.-Y. Chen, C.-M. Huang, M. Lin, J. Lu, L.-L. Cao, P. Li, Neurotransmitter receptor HTR2B regulates lipid metabolism to inhibit ferroptosis in gastric cancer. Cancer Res. 83(23), 3868–85 (2023). https://doi.org/10.1158/0008-5472.Can-23-1012

Article  CAS  PubMed  Google Scholar 

W.J. Liu, W.F. Huang, L. Ye, R.H. Chen, C. Yang, H.L. Wu, Q.J. Pan, H.F. Liu, The activity and role of autophagy in the pathogenesis of diabetic nephropathy. Eur. Rev. Med Pharm. Sci. 22(10), 3182–9 (2018). https://doi.org/10.26355/eurrev_201805_15079

Article  Google Scholar 

C. Yang, X.-C. Chen, Z.-H. Li, H.-L. Wu, K.-P. Jing, X.-R. Huang, L. Ye, B. Wei, H.-Y. Lan, H.-F. Liu, SMAD3 promotes autophagy dysregulation by triggering lysosome depletion in tubular epithelial cells in diabetic nephropathy. Autophagy 17(9), 2325–44 (2020). https://doi.org/10.1080/15548627.2020.1824694

Article  CAS  PubMed  PubMed Central  Google Scholar 

O. Lenoir, M. Jasiek, C. Hénique, L. Guyonnet, B. Hartleben, T. Bork, A. Chipont, K. Flosseau, I. Bensaada, A. Schmitt, J.-M. Massé, M. Souyri, T.B. Huber, P.-L. Tharaux, Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis. Autophagy 11(7), 1130–45 (2015). https://doi.org/10.1080/15548627.2015.1049799

Article  CAS  PubMed  PubMed Central  Google Scholar 

A. Li, B. Yi, H. Han, S. Yang, Z. Hu, L. Zheng, J. Wang, Q. Liao, H. Zhang, Vitamin D-VDR (vitamin D receptor) regulates defective autophagy in renal tubular epithelial cell in streptozotocin-induced diabetic mice via the AMPK pathway. Autophagy 18(4), 877–90 (2021). https://doi.org/10.1080/15548627.2021.1962681

Article  CAS  PubMed  PubMed Central  Google Scholar 

S.P. Panda, V. Singh, The dysregulated MAD in mad: A neuro-theranostic approach through the induction of autophagic biomarkers LC3B-II and ATG. Mol. Neurobiol. 60(9), 5214–36 (2023). https://doi.org/10.1007/s12035-023-03402-y

Article  CAS  PubMed  Google Scholar 

J. Debnath, N. Gammoh, K.M. Ryan, Autophagy and autophagy-related pathways in cancer. Nat. Rev. Mol. Cell Biol. 24(8), 560–75 (2023). https://doi.org/10.1038/s41580-023-00585-z

Article  CAS  PubMed 

留言 (0)

沒有登入
gif