Extensions of Lorentzian Hawking–Page Solutions with Null Singularities, Spacelike Singularities, and Cauchy Horizons of Taub–NUT Type

Appendix1.1 Expansion of the Solutions Near the Center

In this section we compute in detail the expansions used in Sect. 2.4.3. The goal is to study the autonomous system of ODEs:

$$\begin \left\ \frac=\alpha \big [(\theta +k)^2+(1-k^2)(1-\alpha )\big ] \\ \frac=k\alpha \big (k\theta -1\big )+\theta \big [(\theta +k)^2-(1+k^2)\big ] \end\right. \end$$

(28)

in a neighborhood of the critical point \((\alpha ,\theta )=(0,\pm \sqrt).\) We set \(x_1=\alpha ,\ x_2=\theta \mp \sqrt,\) to obtain the system:

$$\begin \left\ \frac=2x_1+x_1\bigg [x_2^2\pm \frac}x_2-\fracx_1\bigg ] \\ \frac=-2kx_1+4x_2+\fracx_1x_2\pm \frac}x_2^2+x_2^3 \end\right. \end$$

(29)

We diagonalize the linear part of this system by setting \(y_1=x_1,\ y_2=-kx_1+x_2\). We obtain the system:

$$\begin \left\ \frac=2y_1-2y_1^2\pm \frac}y_1y_2+U_1^(y_1,y_2) \\ \frac=4y_2\pm \frac}y_2^2-3y_1y_2+U_2^(y_1,y_2) \end\right. \end$$

(30)

where \(U_1^(y_1,y_2),\ U_2^(y_1,y_2)\) are homogeneous polynomials of degree 3. The critical point (0, 0) is stable to the past. The eigenvalues \(\lambda _1=2,\ \lambda _2=4\) are resonant, since \((2,0)\cdot (\lambda _1,\lambda _2)=\lambda _2.\) Using the Poincaré–Dulac theorem, we obtain that the solutions have the form:

$$\begin \left\ y_1=z_1+Q_1^(z_1,z_2) \\ y_2=z_2+Q_2^(z_1,z_2) \end\right. \end$$

(31)

where \(Q_1^(z_1,z_2),\ Q_2^(z_1,z_2)\) are analytic function that vanish to order 2 at the origin, and \(z_1,\ z_2\) are solutions to the system:

$$\begin \left\ \frac=2z_1\\ \frac=4z_2+C_0z_1^2 \end\right. \end$$

(32)

We compute \(z_1=a_1e^,\ z_2=a_2e^+C_0a_1^2se^.\) We introduce the equivalence relation \((a_1,a_2)\sim (Aa_1,A^2a_2)\), for some \(A>0,\) and we denote by \(}\) the set of equivalence classes. There is a one to one correspondence between \(}\) and the orbits of (30) near the origin. We write:

$$\beginQ_1^(z_1,z_2)=b^z_iz_j+Q_1^(z_1,z_2),\ Q_2^(z_1,z_2)=d^z_iz_j+Q_1^(z_1,z_2),\end$$

and we obtain that \(C_0=0\). This corresponds to the fact that even though the eigenvalues are resonant, the resonant monomial \(\begin 0&y_1^2 \end\) does not appear on the right-hand side of (30). We also obtain \(b^=-1.\) Thus:

$$\beginy_1=a_1e^-a_1^2e^+O(e^),\ y_2=\big (a_2+a_1^2d^\big )e^+O(e^).\end$$

Finally, in a neighborhood of the negatively stable critical point \((0,\pm \sqrt)\), the orbits of (28) satisfy the expansion:

$$\begin & \alpha =a_1e^-a_1^2e^+O(e^),\\ & \theta =\pm \sqrt\mp \frac}e^+\bigg (\pm \frac}+a_1^2d^+a_2\bigg )e^+O(e^),\end$$

for some \((a_1,a_2)\in }.\)

1.2 Sectional Curvature Computation

In this section, we compute the sectional curvatures of \(S^2\) and \(}^\) with respect to the metric:

$$\begin\tilde=-\frace^du^2-\frace^dudr+\fracr^2d\sigma _2^2+f^2d\sigma _1^2.\end$$

We express these using the corresponding 4-dimensional metric:

$$\beging=-e^du^2-2e^dudr+r^2d\sigma _2^2,\end$$

and the quantities defined in Sect. .

In general, we compute for \(a,b,c,d\ne \psi :\)

$$\begin}_ ^d= & R_ ^d-\delta ^d _\nabla _\nabla _c\log f+g_\nabla _\nabla ^d\log f+\frac\big (\nabla _\log f\big )\delta ^d _\nabla _c\log f\\ & -\frac\big (\nabla _\log f\big )g_\nabla ^d\log f-\fracg_\delta ^d _g(\nabla \log f,\nabla \log f).\end$$

We apply this formula to compute:

$$\begin }_= & \frac}_ ^=\frac\bigg [R_ ^+\nabla _\nabla _\log f-\fracr^2g(\nabla \log f,\nabla \log f)\bigg ]\\= & \frac\bigg [\frac-k(1-\mu )(\theta +\zeta )-k^2r^2g(\nabla \phi ,\nabla \phi )\bigg ]\\= & \frac\bigg [1-(1-\mu )(k\theta +1)(k\zeta +1)\bigg ].\end$$

Similarly, we also compute:

$$\begin }_}^}= & \frac}(n,l,n,l)=f^2K_}^}+\frac\nabla _\nabla _\log f\\ & +\frac\nabla _\log f\nabla _\log f+\fracg(\nabla \log f,\nabla \log f)\\= & \frac\bigg [1-(1-\mu )(k\theta +1)(k\zeta +1)\bigg ]+(1+k^2)\frac(1-\mu )\theta \zeta .\end$$

1.3 Equations in Double Null Coordinates

In this section, we write the Einstein-Scalar field equations in spherical symmetry for a self-similar solution in double null coordinates as a system of autonomous ODEs. We consider the metric:

$$\beging=-\Omega ^2dudv+r^2d\sigma _2^2.\end$$

The Einstein-Scalar field equations are:

$$\begin & \partial _u(\Omega ^\partial _ur)=-r\Omega ^(\partial _u\phi )^2 \end$$

(33)

$$\begin & \partial _v(\Omega ^\partial _vr)=-r\Omega ^(\partial _v\phi )^2 \end$$

(34)

$$\begin & \partial _u\partial _v\log \Omega =-\frac\partial _u\partial _v r-4\partial _u\phi \partial _v\phi \end$$

(35)

$$\begin & \partial _u\partial _vr^2=-\frac\Omega ^2 \end$$

(36)

$$\begin & r\partial _u\partial _v\phi +\partial _v\phi \partial _ur+\partial _u\phi \partial _vr=0 \end$$

(37)

We notice that equation (35) is implied by the other equations. Moreover, we can rewrite the Raychaudhuri’s equations (33), (34) as:

$$\begin \partial _um= & -2r^2\Omega ^\partial _vr(\partial _u\phi )^2 \end$$

(38)

$$\begin \partial _vm= & -2r^2\Omega ^\partial _ur(\partial _v\phi )^2 \end$$

(39)

where m is the Hawking mass:

$$\begin m=\frac(1+4\Omega ^\partial _ur\partial _vr). \end$$

(40)

Following Sect. 3.3.1, we assume we are in self-similar double null gauge, so \(S=u\partial _u+v\partial _v\) and:

$$\beginS\Omega =0,\ Sr=r,\ S\phi =-k.\end$$

As before, we consider the following quantities:

$$\begin\theta =\frac,\ \zeta =\frac,\ \beta =\frac.\end$$

We introduce the self-similar coordinate:

The change of coordinates is given by:

$$\begin\partial _v=-\frac\partial _y,\ \partial _u=\frac\partial _y+\partial _u.\end$$

Thus, in (u, y) coordinates we have \(S=u\partial _u.\) We recall the notation:

$$\begin\chi =\phi +k\log (-u),\ R=-\frac.\end$$

The self-similar condition is equivalent to \(\Omega =\Omega (y),\ R=R(y),\ \chi =\chi (y).\) We compute:

$$\begin\beta =\frac,\ \zeta =\frac,\ \Omega ^2=-\frac\partial _yR\big (y\partial _yR-R\big ).\end$$

We can rewrite the wave equation (37) as:

$$\beginy\partial _y\theta +\theta \bigg (1+\frac\bigg )+k=0.\end$$

Also, we can rewrite equation (36) as:

$$\beginy\partial _y\beta +\bigg (2-\frac\bigg )\beta (\beta -1)=0.\end$$

Using this in equations (38),(39) eventually gives:

$$\begin\frac=\beta \theta ^2-\frac+1.\end$$

Finally, we conclude that the Einstein-Scalar field system is equivalent to:

$$\begin \left\ y\partial _y\theta =k\big (k\theta -1\big )+\beta \theta \big [(\theta +k)^2-(1+k^2)\big ] \\ y\partial _y\beta =\beta (1-k^2)-\beta ^2\big [(\theta +k)^2+(1-k^2)\big ] \end\right. \end$$

留言 (0)

沒有登入
gif