Enhanced diagnosis of pes planus and pes cavus using deep learning-based segmentation of weight-bearing lateral foot radiographs: a comparative observer study

Sensiba PR, Coffey MJ, Williams NE, Mariscalco M, Laughlin RT. Inter- and intraobserver reliability in the radiographic evaluation of adult flatfoot deformity. Foot Ankle Int. 2010;31(2):141–5. https://doi.org/10.3113/FAI.2010.0141.

Article  Google Scholar 

Templeton AW, McAlister WH, Zim ID. Standardization of terminology and evaluation of osseous relationships in congenitally abnormal feet. Am J Roentgenol Radium Ther Nucl Med. 1965;93:374–81.

Google Scholar 

Cheung ZB, Myerson MS, Tracey J, Vulcano E. Weightbearing CT scan assessment of foot alignment in patients with hallux rigidus. Foot Ankle Int. 2018;39(1):67–74. https://doi.org/10.1177/1071100717732549.

Article  Google Scholar 

Zhang JZ, Lintz F, Bernasconi A, Weight Bearing CTISG, Zhang S (2019). 3D biometrics for hindfoot alignment using weightbearing computed tomography. Foot Ankle Int. 2019;40(6):720–6. https://doi.org/10.1177/1071100719835492.

Burssens A, Peeters J, Peiffer M, Marien R, Lenaerts T, Wbct ISG, et al. Reliability and correlation analysis of computed methods to convert conventional 2D radiological hindfoot measurements to a 3D setting using weightbearing CT. Int J Comput Assist Radiol Surg. 2018;13(12):1999–2008. https://doi.org/10.1007/s11548-018-1727-5.

Article  Google Scholar 

Abousayed MM, Alley MC, Shakked R, Rosenbaum AJ. Adult-acquired flatfoot deformity: etiology, diagnosis, and management. JBJS Rev. 2017;5(8): e7. https://doi.org/10.2106/JBJS.RVW.16.00116.

Article  Google Scholar 

Younger AS, Sawatzky B, Dryden P. Radiographic assessment of adult flatfoot. Foot Ankle Int. 2005;26(10):820–5. https://doi.org/10.1177/107110070502601006.

Article  Google Scholar 

Kido M, Ikoma K, Ikeda R, Hosokawa T, Hara Y, Imai K, et al. Reproducibility of radiographic methods for assessing longitudinal tarsal axes: Part 1: Consecutive case study. Foot (Edinb). 2019;40:1–7. https://doi.org/10.1016/j.foot.2019.03.003.

Article  Google Scholar 

Carrara C, Belvedere C, Caravaggi P, Durante S, Leardini A. Techniques for 3D foot bone orientation angles in weight-bearing from cone-beam computed tomography. Foot Ankle Surg. 2021;27(2):168–74. https://doi.org/10.1016/j.fas.2020.03.013.

Article  Google Scholar 

Broos M, Berardo S, Dobbe JGG, Maas M, Streekstra GJ, Wellenberg RHH. Geometric 3D analyses of the foot and ankle using weight-bearing and non weight-bearing cone-beam CT images: the new standard? Eur J Radiol. 2021;138:109674. https://doi.org/10.1016/j.ejrad.2021.109674.

Article  Google Scholar 

Ortolani M, Leardini A, Pavani C, Scicolone S, Girolami M, Bevoni R, et al. Angular and linear measurements of adult flexible flatfoot via weight-bearing CT scans and 3D bone reconstruction tools. Sci Rep. 2021;11(1):16139. https://doi.org/10.1038/s41598-021-95708-x.

Article  Google Scholar 

Mo Y, Wu Y, Yang X, Liu F, Liao YJN. Review the state-of-the-art technologies of semantic segmentation based on deep learning. Neurocomputing. 2022;493:626–46.

Article  Google Scholar 

Gomez O, Mesejo P, Ibanez O, Valsecchi A, Cordon O. Deep architectures for high-resolution multi-organ chest X-ray image segmentation. Neural Comput Appl. 2020;32(20):15949–63. https://doi.org/10.1007/s00521-019-04532-y.

Article  Google Scholar 

Nayak J, Naik B, Dinesh P, Vakula K, Dash PB, Pelusi D. Significance of deep learning for Covid-19: state-of-the-art review. Res Biomed Eng. 2021;1–24.

Ryu SM, Shin K, Shin SW, Lee S, Kim N. Enhancement of evaluating flatfoot on a weight-bearing lateral radiograph of the foot with U-Net based semantic segmentation on the long axis of tarsal and metatarsal bones in an active learning manner. Comput Biol Med. 2022;145:105400. https://doi.org/10.1016/j.compbiomed.2022.105400.

Article  Google Scholar 

Dice LRJE. Measures of the amount of ecologic association between species. Ecology. 1945;26(3):297–302.

Article  Google Scholar 

Taha AA, Hanbury A. An efficient algorithm for calculating the exact Hausdorff distance. IEEE Trans Pattern Anal Mach Intell. 2015;37(11):2153–63. https://doi.org/10.1109/TPAMI.2015.2408351.

Article  Google Scholar 

Varma M, Lu M, Gardner R, Dunnmon J, Khandwala N, Rajpurkar P, et al. Automated abnormality detection in lower extremity radiographs using deep learning. Nat Mach Intell. 2019;1(12):578–83. https://doi.org/10.1038/s42256-019-0126-0.

Article  Google Scholar 

Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage. 2006;31(3):1116–28. https://doi.org/10.1016/j.neuroimage.2006.01.015.

Article  Google Scholar 

Davidovits P. Physics in biology and medicine. Academic press; 2018.

Li Q, Griffiths JG. Least squares ellipsoid specific fitting. Geometric modeling and processing, 2004 proceedings: IEEE; 2004. p. 335–40.

Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci. 2016;374(2065):20150202. https://doi.org/10.1098/rsta.2015.0202.

Article  MathSciNet  Google Scholar 

Reza AM. Realization of the Contrast Limited Adaptive Histogram Equalization (CLAHE) for real-time image enhancement. J VLSI Signal Proc Syst. 2004;38(1):35–44. https://doi.org/10.1023/B:Vlsi.0000028532.53893.82.

Article  Google Scholar 

Qin X, Zhang Z, Huang C, Dehghan M, Zaiane OR, Jagersand MJPR. U2-Net: Going deeper with nested U-structure for salient object detection. Pattern Recogn. 2020;106:107404.

Article  Google Scholar 

Xie SN, Tu ZW. Holistically-nested edge detection. Int J Comput Vis. 2017;125(1–3):3–18. https://doi.org/10.1007/s11263-017-1004-z.

Article  MathSciNet  Google Scholar 

Kervadec H, Bouchtiba J, Desrosiers C, Granger E, Dolz J, Ben Ayed I. Boundary loss for highly unbalanced segmentation. Med Image Anal. 2021;67. https://doi.org/10.1016/j.media.2020.101851.

Chu CSJ. Time-series segmentation—a sliding window approach. Inform Sci. 1995;85(1–3):147–73. https://doi.org/10.1016/0020-0255(95)00021-G.

Article  Google Scholar 

Cardoso MJ, Li W, Brown R, Ma N, Kerfoot E, Wang Y, et al. Monai: an open-source framework for deep learning in healthcare. 2022.

Buslaev A, Iglovikov VI, Khvedchenya E, Parinov A, Druzhinin M, Kalinin AA. Albumentations: fast and flexible image augmentations. Information. 2020;11(2):125. https://doi.org/10.3390/info11020125.

Article  Google Scholar 

Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. Pytorch: an imperative style, high-performance deep learning library. 2019;32:8026–37.

Song J, Choe K, Neary M, Zifchock RA, Cameron KL, Trepa M, et al. Comprehensive biomechanical characterization of feet in USMA cadets: comparison across race, gender, arch flexibility, and foot types. Gait Posture. 2018;60:175–80. https://doi.org/10.1016/j.gaitpost.2017.12.001.

Article  Google Scholar 

Flores DV, Mejia Gomez C, Fernandez Hernando M, Davis MA, Pathria MN. Adult acquired flatfoot deformity: anatomy, biomechanics, staging, and imaging findings. Radiographics. 2019;39(5):1437–60. https://doi.org/10.1148/rg.2019190046.

Article  Google Scholar 

Yates B, Merriman LM. Merriman’s assessment of the lower limb. Elsevier Health Sciences; 2009.

DiGiovanni JE, Smith SD. Normal biomechanics of the adult rearfoot: a radiographic analysis. J Am Podiatry Assoc. 1976;66(11):812–24. https://doi.org/10.7547/87507315-66-11-812.

Article  Google Scholar 

Chi TD, Toolan BC, Sangeorzan BJ, Hansen ST. The lateral column lengthening and medial column stabilization procedures. Clin Orthop Relat R. 1999;365:81–90.

Article  Google Scholar 

Omalley MJ, Deland JT, Lee KT. selective hindfoot arthrodesis for the treatment of adult acquired flatfoot deformity—an in-vitro study. Foot Ankle Int. 1995;16(7):411–7. https://doi.org/10.1177/107110079501600706.

Article  Google Scholar 

Ryu SM, Shin K, Shin SW, Lee SH, Seo SM, Cheon SU, et al. Automated diagnosis of flatfoot using cascaded convolutional neural network for angle measurements in weight-bearing lateral radiographs. Eur Radiol. 2023;33(7):4822–32. https://doi.org/10.1007/s00330-023-09442-1.

Article  Google Scholar 

Ryu SM, Shin K, Shin SW, Lee SH, Seo SM, Cheon SU, et al. Automated landmark identification for diagnosis of the deformity using a cascade convolutional neural network (FlatNet) on weight-bearing lateral radiographs of the foot. Comput Biol Med. 2022;148:105914. https://doi.org/10.1016/j.compbiomed.2022.105914.

Article  Google Scholar 

Tschandl P, Codella N, Akay BN, Argenziano G, Braun RP, Cabo H, et al. Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. Lancet Oncol. 2019;20(7):938–47. https://doi.org/10.1016/S1470-2045(19)30333-X.

Article  Google Scholar 

Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018;29(8):1836–42. https://doi.org/10.1093/annonc/mdy166.

Article  Google Scholar 

留言 (0)

沒有登入
gif