Sensiba PR, Coffey MJ, Williams NE, Mariscalco M, Laughlin RT. Inter- and intraobserver reliability in the radiographic evaluation of adult flatfoot deformity. Foot Ankle Int. 2010;31(2):141–5. https://doi.org/10.3113/FAI.2010.0141.
Templeton AW, McAlister WH, Zim ID. Standardization of terminology and evaluation of osseous relationships in congenitally abnormal feet. Am J Roentgenol Radium Ther Nucl Med. 1965;93:374–81.
Cheung ZB, Myerson MS, Tracey J, Vulcano E. Weightbearing CT scan assessment of foot alignment in patients with hallux rigidus. Foot Ankle Int. 2018;39(1):67–74. https://doi.org/10.1177/1071100717732549.
Zhang JZ, Lintz F, Bernasconi A, Weight Bearing CTISG, Zhang S (2019). 3D biometrics for hindfoot alignment using weightbearing computed tomography. Foot Ankle Int. 2019;40(6):720–6. https://doi.org/10.1177/1071100719835492.
Burssens A, Peeters J, Peiffer M, Marien R, Lenaerts T, Wbct ISG, et al. Reliability and correlation analysis of computed methods to convert conventional 2D radiological hindfoot measurements to a 3D setting using weightbearing CT. Int J Comput Assist Radiol Surg. 2018;13(12):1999–2008. https://doi.org/10.1007/s11548-018-1727-5.
Abousayed MM, Alley MC, Shakked R, Rosenbaum AJ. Adult-acquired flatfoot deformity: etiology, diagnosis, and management. JBJS Rev. 2017;5(8): e7. https://doi.org/10.2106/JBJS.RVW.16.00116.
Younger AS, Sawatzky B, Dryden P. Radiographic assessment of adult flatfoot. Foot Ankle Int. 2005;26(10):820–5. https://doi.org/10.1177/107110070502601006.
Kido M, Ikoma K, Ikeda R, Hosokawa T, Hara Y, Imai K, et al. Reproducibility of radiographic methods for assessing longitudinal tarsal axes: Part 1: Consecutive case study. Foot (Edinb). 2019;40:1–7. https://doi.org/10.1016/j.foot.2019.03.003.
Carrara C, Belvedere C, Caravaggi P, Durante S, Leardini A. Techniques for 3D foot bone orientation angles in weight-bearing from cone-beam computed tomography. Foot Ankle Surg. 2021;27(2):168–74. https://doi.org/10.1016/j.fas.2020.03.013.
Broos M, Berardo S, Dobbe JGG, Maas M, Streekstra GJ, Wellenberg RHH. Geometric 3D analyses of the foot and ankle using weight-bearing and non weight-bearing cone-beam CT images: the new standard? Eur J Radiol. 2021;138:109674. https://doi.org/10.1016/j.ejrad.2021.109674.
Ortolani M, Leardini A, Pavani C, Scicolone S, Girolami M, Bevoni R, et al. Angular and linear measurements of adult flexible flatfoot via weight-bearing CT scans and 3D bone reconstruction tools. Sci Rep. 2021;11(1):16139. https://doi.org/10.1038/s41598-021-95708-x.
Mo Y, Wu Y, Yang X, Liu F, Liao YJN. Review the state-of-the-art technologies of semantic segmentation based on deep learning. Neurocomputing. 2022;493:626–46.
Gomez O, Mesejo P, Ibanez O, Valsecchi A, Cordon O. Deep architectures for high-resolution multi-organ chest X-ray image segmentation. Neural Comput Appl. 2020;32(20):15949–63. https://doi.org/10.1007/s00521-019-04532-y.
Nayak J, Naik B, Dinesh P, Vakula K, Dash PB, Pelusi D. Significance of deep learning for Covid-19: state-of-the-art review. Res Biomed Eng. 2021;1–24.
Ryu SM, Shin K, Shin SW, Lee S, Kim N. Enhancement of evaluating flatfoot on a weight-bearing lateral radiograph of the foot with U-Net based semantic segmentation on the long axis of tarsal and metatarsal bones in an active learning manner. Comput Biol Med. 2022;145:105400. https://doi.org/10.1016/j.compbiomed.2022.105400.
Dice LRJE. Measures of the amount of ecologic association between species. Ecology. 1945;26(3):297–302.
Taha AA, Hanbury A. An efficient algorithm for calculating the exact Hausdorff distance. IEEE Trans Pattern Anal Mach Intell. 2015;37(11):2153–63. https://doi.org/10.1109/TPAMI.2015.2408351.
Varma M, Lu M, Gardner R, Dunnmon J, Khandwala N, Rajpurkar P, et al. Automated abnormality detection in lower extremity radiographs using deep learning. Nat Mach Intell. 2019;1(12):578–83. https://doi.org/10.1038/s42256-019-0126-0.
Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage. 2006;31(3):1116–28. https://doi.org/10.1016/j.neuroimage.2006.01.015.
Davidovits P. Physics in biology and medicine. Academic press; 2018.
Li Q, Griffiths JG. Least squares ellipsoid specific fitting. Geometric modeling and processing, 2004 proceedings: IEEE; 2004. p. 335–40.
Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci. 2016;374(2065):20150202. https://doi.org/10.1098/rsta.2015.0202.
Article MathSciNet Google Scholar
Reza AM. Realization of the Contrast Limited Adaptive Histogram Equalization (CLAHE) for real-time image enhancement. J VLSI Signal Proc Syst. 2004;38(1):35–44. https://doi.org/10.1023/B:Vlsi.0000028532.53893.82.
Qin X, Zhang Z, Huang C, Dehghan M, Zaiane OR, Jagersand MJPR. U2-Net: Going deeper with nested U-structure for salient object detection. Pattern Recogn. 2020;106:107404.
Xie SN, Tu ZW. Holistically-nested edge detection. Int J Comput Vis. 2017;125(1–3):3–18. https://doi.org/10.1007/s11263-017-1004-z.
Article MathSciNet Google Scholar
Kervadec H, Bouchtiba J, Desrosiers C, Granger E, Dolz J, Ben Ayed I. Boundary loss for highly unbalanced segmentation. Med Image Anal. 2021;67. https://doi.org/10.1016/j.media.2020.101851.
Chu CSJ. Time-series segmentation—a sliding window approach. Inform Sci. 1995;85(1–3):147–73. https://doi.org/10.1016/0020-0255(95)00021-G.
Cardoso MJ, Li W, Brown R, Ma N, Kerfoot E, Wang Y, et al. Monai: an open-source framework for deep learning in healthcare. 2022.
Buslaev A, Iglovikov VI, Khvedchenya E, Parinov A, Druzhinin M, Kalinin AA. Albumentations: fast and flexible image augmentations. Information. 2020;11(2):125. https://doi.org/10.3390/info11020125.
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. Pytorch: an imperative style, high-performance deep learning library. 2019;32:8026–37.
Song J, Choe K, Neary M, Zifchock RA, Cameron KL, Trepa M, et al. Comprehensive biomechanical characterization of feet in USMA cadets: comparison across race, gender, arch flexibility, and foot types. Gait Posture. 2018;60:175–80. https://doi.org/10.1016/j.gaitpost.2017.12.001.
Flores DV, Mejia Gomez C, Fernandez Hernando M, Davis MA, Pathria MN. Adult acquired flatfoot deformity: anatomy, biomechanics, staging, and imaging findings. Radiographics. 2019;39(5):1437–60. https://doi.org/10.1148/rg.2019190046.
Yates B, Merriman LM. Merriman’s assessment of the lower limb. Elsevier Health Sciences; 2009.
DiGiovanni JE, Smith SD. Normal biomechanics of the adult rearfoot: a radiographic analysis. J Am Podiatry Assoc. 1976;66(11):812–24. https://doi.org/10.7547/87507315-66-11-812.
Chi TD, Toolan BC, Sangeorzan BJ, Hansen ST. The lateral column lengthening and medial column stabilization procedures. Clin Orthop Relat R. 1999;365:81–90.
Omalley MJ, Deland JT, Lee KT. selective hindfoot arthrodesis for the treatment of adult acquired flatfoot deformity—an in-vitro study. Foot Ankle Int. 1995;16(7):411–7. https://doi.org/10.1177/107110079501600706.
Ryu SM, Shin K, Shin SW, Lee SH, Seo SM, Cheon SU, et al. Automated diagnosis of flatfoot using cascaded convolutional neural network for angle measurements in weight-bearing lateral radiographs. Eur Radiol. 2023;33(7):4822–32. https://doi.org/10.1007/s00330-023-09442-1.
Ryu SM, Shin K, Shin SW, Lee SH, Seo SM, Cheon SU, et al. Automated landmark identification for diagnosis of the deformity using a cascade convolutional neural network (FlatNet) on weight-bearing lateral radiographs of the foot. Comput Biol Med. 2022;148:105914. https://doi.org/10.1016/j.compbiomed.2022.105914.
Tschandl P, Codella N, Akay BN, Argenziano G, Braun RP, Cabo H, et al. Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study. Lancet Oncol. 2019;20(7):938–47. https://doi.org/10.1016/S1470-2045(19)30333-X.
Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018;29(8):1836–42. https://doi.org/10.1093/annonc/mdy166.
留言 (0)