Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Stafford R, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J (2010) Executive summary: heart disease and stroke statistics–2010 update: a report from the American heart association. Circulation 121(7):948–954
Takii T, Yasuda S, Takahashi J, Ito K, Shiba N, Shirato K, Shimokawa H (2010) Trends in acute myocardial infarction incidence and mortality over 30 years in Japan: report from the MIYAGI-AMI registry study. Circ J 74(1):93–100
Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357(11):1121–1135
Article PubMed CAS Google Scholar
Hausenloy DJ, Yellon DM (2016) Ischaemic conditioning and reperfusion injury. Nat Rev Cardiol 13(4):193–209
Article PubMed CAS Google Scholar
Gaspar T, Kevers C, Bisbis B, Penel C, Greppin H, Garnier F, Rideau M, Huault C, Billard JP, Foidart JM (1999) Shemin pathway and peroxidase deficiency in a fully habituated and fully heterotrophic non-organogenic sugarbeet callus: an adaptative strategy or the consequence of modified hormonal balances and sensitivities in these cancerous cells? A Rev Reassessment Cell Prolif 32(5):249–270
Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7(5):392–401
Article PubMed CAS Google Scholar
Wainwright JV, Endo T, Cooper JB, Tominaga T, Schmidt MH (2019) The role of 5-aminolevulinic acid in spinal tumor surgery: a review. J Neurooncol 141(3):575–584
Article PubMed CAS Google Scholar
Fujino M, Nishio Y, Ito H, Tanaka T, Li XK (2016) 5-Aminolevulinic acid regulates the inflammatory response and alloimmune reaction. Int Immunopharmacol 37:71–78
Article PubMed CAS Google Scholar
Hou J, Cai S, Kitajima Y, Fujino M, Ito H, Takahashi K, Abe F, Tanaka T, Ding Q, Li XK (2013) 5-Aminolevulinic acid combined with ferrous iron induces carbon monoxide generation in mouse kidneys and protects from renal ischemia-reperfusion injury. Am J Physiol Renal Physiol 305(8):F1149-1157
Article PubMed CAS Google Scholar
Zhao M, Guo H, Chen J, Fujino M, Ito H, Takahashi K, Abe F, Nakajima M, Tanaka T, Wang J, Huang H, Zheng S, Hei M, Li J, Huang S, Li J, Ma X, Chen Y, Zhao L, Zhuang J, Zhu P, Li XK (2015) 5-aminolevulinic acid combined with sodium ferrous citrate ameliorates H2O2-induced cardiomyocyte hypertrophy via activation of the MAPK/Nrf2/HO-1 pathway. Am J Physiol Cell Physiol 308(8):C665-672
Article PubMed CAS Google Scholar
Hou J, Zhang Q, Fujino M, Cai S, Ito H, Takahashi K, Abe F, Nakajima M, Tanaka T, Xu J, Zou H, Ding Q, Li XK (2015) 5-Aminolevulinic acid with ferrous iron induces permanent cardiac allograft acceptance in mice via induction of regulatory cells. J Heart Lung Transplant 34(2):254–263
Zhao M, Zhu P, Fujino M, Nishio Y, Chen J, Ito H, Takahashi K, Nakajima M, Tanaka T, Zhao L, Zhuang J, Li XK (2016) 5-Aminolevulinic acid with sodium ferrous citrate induces autophagy and protects cardiomyocytes from hypoxia-induced cellular injury through MAPK-Nrf-2-HO-1 signaling cascade. Biochem Biophys Res Commun 479(4):663–669
Article PubMed CAS Google Scholar
Nishio Y, Fujino M, Zhao M, Ishii T, Ishizuka M, Ito H, Takahashi K, Abe F, Nakajima M, Tanaka T, Taketani S, Nagahara Y, Li XK (2014) 5-Aminolevulinic acid combined with ferrous iron enhances the expression of heme oxygenase-1. Int Immunopharmacol 19(2):300–307
Article PubMed CAS Google Scholar
Miyazaki Y, Kaikita K, Endo M, Horio E, Miura M, Tsujita K, Hokimoto S, Yamamuro M, Iwawaki T, Gotoh T, Ogawa H, Oike Y (2011) C/EBP homologous protein deficiency attenuates myocardial reperfusion injury by inhibiting myocardial apoptosis and inflammation. Arterioscler Thromb Vasc Biol 31(5):1124–1132
Article PubMed CAS Google Scholar
Ishii M, Kaikita K, Sato K, Sueta D, Fujisue K, Arima Y, Oimatsu Y, Mitsuse T, Onoue Y, Araki S, Yamamuro M, Nakamura T, Izumiya Y, Yamamoto E, Kojima S, Kim-Mitsuyama S, Ogawa H, Tsujita K (2017) Cardioprotective effects of LCZ696 (Sacubitril/Valsartan) after experimental acute myocardial infarction. JACC Basic Transl Sci 2(6):655–668
Article PubMed PubMed Central Google Scholar
Onoue Y, Izumiya Y, Hanatani S, Ishida T, Arima Y, Yamamura S, Kimura Y, Araki S, Ishii M, Nakamura T, Oimatsu Y, Sakamoto K, Yamamoto E, Kojima S, Kaikita K, Tsujita K (2018) Akt1-mediated muscle growth promotes blood flow recovery after hindlimb ischemia by enhancing heme oxygenase-1 in neighboring cells. Circ J 82(11):2905–2912
Article PubMed CAS Google Scholar
Tenhunen R, Marver HS, Schmid R (1969) Microsomal heme oxygenase. Characterization of the enzyme. J Biol Chem 244(23):6388–6394
Article PubMed CAS Google Scholar
Tenhunen R, Marver HS, Schmid R (1970) The enzymatic catabolism of hemoglobin: stimulation of microsomal heme oxygenase by hemin. J Lab Clin Med 75(3):410–421
Ayer A, Zarjou A, Agarwal A, Stocker R (2016) Heme oxygenases in cardiovascular health and disease. Physiol Rev 96(4):1449–1508
Article PubMed PubMed Central CAS Google Scholar
Dunn LL, Midwinter RG, Ni J, Hamid HA, Parish CR, Stocker R (2014) New insights into intracellular locations and functions of heme oxygenase-1. Antioxid Redox Signal 20(11):1723–1742
Article PubMed PubMed Central CAS Google Scholar
Shan Y, Lambrecht RW, Ghaziani T, Donohue SE, Bonkovsky HL (2004) Role of bach-1 in regulation of heme oxygenase-1 in human liver cells: insights from studies with small interfering RNAS. J Biol Chem 279(50):51769–51774
Article PubMed CAS Google Scholar
van den Boogert J, van Hillegersberg R, de Rooij FW, de Bruin RW, Edixhoven-Bosdijk A, Houtsmuller AB, Siersema PD, Wilson JH, Tilanus HW (1998) 5-aminolaevulinic acid-induced protoporphyrin IX accumulation in tissues: pharmacokinetics after oral or intravenous administration. J Photochem Photobiol B 44(1):29–38
Ito H, Nishio Y, Hara T, Sugihara H, Tanaka T, Li XK (2018) Oral administration of 5-aminolevulinic acid induces heme oxygenase-1 expression in peripheral blood mononuclear cells of healthy human subjects in combination with ferrous iron. Eur J Pharmacol 833:25–33
Article PubMed CAS Google Scholar
Otterbein LE, Foresti R, Motterlini R (2016) Heme oxygenase-1 and carbon monoxide in the heart: the balancing act between danger signaling and pro-survival. Circ Res 118(12):1940–1959
Article PubMed PubMed Central CAS Google Scholar
Sharma HS, Das DK, Verdouw PD (1999) Enhanced expression and localization of heme oxygenase-1 during recovery phase of porcine stunned myocardium. Mol Cell Biochem 196(1–2):133–139
Yet SF, Perrella MA, Layne MD, Hsieh CM, Maemura K, Kobzik L, Wiesel P, Christou H, Kourembanas S, Lee ME (1999) Hypoxia induces severe right ventricular dilatation and infarction in heme oxygenase-1 null mice. J Clin Invest 103(8):R23-29
Article PubMed PubMed Central CAS Google Scholar
Yoshida T, Maulik N, Ho YS, Alam J, Das DK (2001) H(mox-1) constitutes an adaptive response to effect antioxidant cardioprotection: a study with transgenic mice heterozygous for targeted disruption of the Heme oxygenase-1 gene. Circulation 103(12):1695–1701
Article PubMed CAS Google Scholar
Yet SF, Tian R, Layne MD, Wang ZY, Maemura K, Solovyeva M, Ith B, Melo LG, Zhang L, Ingwall JS, Dzau VJ, Lee ME, Perrella MA (2001) Cardiac-specific expression of heme oxygenase-1 protects against ischemia and reperfusion injury in transgenic mice. Circ Res 89(2):168–173
Article PubMed CAS Google Scholar
Bilbija D, Gravning JA, Haugen F, Attramadal H, Valen G (2012) Protecting the heart through delivering DNA encoding for heme oxygenase-1 into skeletal muscle. Life Sci 91(17–18):828–836
留言 (0)