Maintenance mechanism of paroxysmal atrial fibrillation from the activation occurring within the pulmonary vein: analysis using non-contact mapping

Haïssaguerre M, Jaïs P, Shah DC, Takahashi A, Hocini M, Quiniou G, Garrigue S, Le Mouroux A, Le Métayer P, Clémenty J (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339:659–666

Article  PubMed  Google Scholar 

Haïssaguerre M, Sanders P, Hocini M, Jaïs P, Clémenty J (2004) Pulmonary veins in the substrate for atrial fibrillation: the “venous wave” hypothesis. J Am Coll Cardiol 43:2290–2292

Article  PubMed  Google Scholar 

Oral H, Knight BP, Tada H, Ozaydin M, Chugh A, Hassan S, Scharf C, Lai SW, Greenstein R, Pelosi F Jr, Strickberger SA, Morady F (2002) Pulmonary vein isolation for paroxysmal and persistent atrial fibrillation. Circulation 105:1077–1081

Article  PubMed  Google Scholar 

Yano M, Egami Y, Kawanami S, Sugae H, Ukita K, Kawamura A, Nakamura H, Matsuhiro Y, Yasumoto K, Tsuda M, Okamoto N, Matsunaga-Lee Y, Nishino M, Tanouchi J (2022) Acute myocardial injury after radiofrequency catheter ablation: impact on pulmonary vein reconnection and relevant factors. Heart Vessels 37:812–820

Article  PubMed  Google Scholar 

Aoyama D, Miyazaki S, Amaya N, Tama N, Hasegawa K, Nomura R, Tsuji T, Nakano A, Uzui H, Tada H (2024) Treatment with catheter ablation for patients with arrhythmia-induced cardiomyopathy caused by atrial fibrillation promises a good prognosis. Heart Vessels 39:240–251

Article  PubMed  Google Scholar 

Kuck KH, Hoffmann BA, Ernst S, Wegscheider K, Treszl A, Metzner A, Eckardt L, Lewalter T, Breithardt G, Willems S (2016) Impact of complete versus incomplete circumferential lines around the pulmonary veins during catheter ablation of paroxysmal atrial fibrillation: results from the gap-atrial fibrillation-German atrial fibrillation competence network 1 trial. Circ Arrhythm Electrophysiol 9:e003337

Article  PubMed  Google Scholar 

Mujović N, Marinković M, Lenarczyk R, Tilz R, Potpara TS (2017) Catheter ablation of atrial fibrillation: an overview for clinicians. Adv Ther 34:1897–1917

Article  PubMed  PubMed Central  Google Scholar 

Scherr D, Dalal D, Cheema A, Cheng A, Henrikson CA, Spragg D, Marine JE, Berger RD, Calkins H, Dong J (2007) Automated detection and characterization of complex fractionated atrial electrograms in human left atrium during atrial fibrillation. Heart Rhythm 4:1013–1020

Article  PubMed  Google Scholar 

Chen J, Off MK, Solheim E, Hoff PI, Schuster P, Ohm OJ (2009) Spatial relationships between the pulmonary veins and sites of complex fractionated atrial electrograms during atrial fibrillation. Pacing Clin Electrophysiol 32:S190-193

Article  PubMed  Google Scholar 

Yamabe H, Morihisa K, Tanaka Y, Uemura T, Enomoto K, Kawano H, Ogawa H (2009) Mechanisms of the maintenance of atrial fibrillation: role of the complex fractionated atrial electrogram region assessed by noncontact mapping. Heart Rhythm 6:1120–1128

Article  PubMed  Google Scholar 

Yamabe H, Morihisa K, Koyama J, Enomoto K, Kanazawa H, Ogawa H (2011) Analysis of the mechanisms initiating random wave propagation at the onset of atrial fibrillation using noncontact mapping: role of complex fractionated electrogram region. Heart Rhythm 8:1228–1236

Article  PubMed  Google Scholar 

Nademanee K, McKenzie J, Kosar E, Schwab M, Sunsaneewitayakul B, Vasavakul T, Khunnawat C, Ngarmukos T (2004) A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. J Am Coll Cardiol 43:2044–2053

Article  PubMed  Google Scholar 

Moe GK, Rheinboldt WC, Abildskov JA (1964) A computer model of atrial fibrillation. Am Heart J 67:200–220

Article  PubMed  Google Scholar 

Allessie MA, Lammers WJEP, Bonke FIM, Hollen SJ (1985) Experimental evaluation of Moe’s multiple wavelet hypothesis of atrial fibrillation. In: Zipes DP, Jalife J (eds) Cardiac electrophysiology and arrhythmias. Grune & Stratton, Orlando, FL, pp 265–275

Google Scholar 

Jalife J (2003) Rotors and spiral waves in atrial fibrillation. J Cardiovasc Electrophysiol 14:776–780

Article  PubMed  Google Scholar 

Kalifa J, Tanaka K, Zaitsev AV, Warren M, Vaidyanathan R, Auerbach D, Pandit S, Vikstrom KL, Ploutz-Snyder R, Talkachou A, Atienza F, Guiraudon G, Jalife J, Berenfeld O (2006) Mechanisms of wave fractionation at boundaries of high-frequency excitation in the posterior left atrium of the isolated sheep heart during atrial fibrillation. Circulation 113:626–633

Article  PubMed  Google Scholar 

Yamabe H, Kanazawa H, Ito M, Kaneko S, Ogawa H (2016) Prevalence and mechanism of rotor activation identified during atrial fibrillation by noncontact mapping: lack of evidence for a role in the maintenance of atrial fibrillation. Heart Rhythm 13:2323–2330

Article  PubMed  Google Scholar 

Jaïs P, Hocini M, Macle L, Choi KJ, Deisenhofer I, Weerasooriya R, Shah DC, Garrigue S, Raybaud F, Scavee C, Le Metayer P, Clémenty J, Haïssaguerre M (2002) Distinctive electrophysiological properties of pulmonary veins in patients with atrial fibrillation. Circulation 106:2479–2485

Article  PubMed  Google Scholar 

Arora R, Verheule S, Scott L, Navarrete A, Katari V, Wilson E, Vaz D, Olgin JE (2003) Arrhythmogenic substrate of the pulmonary veins assessed by high-resolution optical mapping. Circulation 107:1816–1821

Article  PubMed  PubMed Central  Google Scholar 

Hocini M, Ho SY, Kawara T, Linnenbank AC, Potse M, Shah D, Jaïs P, Janse MJ, Haïssaguerre M, De Bakker JM (2002) Electrical conduction in canine pulmonary veins: electrophysiological and anatomic correlation. Circulation 105:2442–2448

Article  PubMed  Google Scholar 

Schotten U, Verheule S, Kirchhof P, Goette A (2011) Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev 91:265–325

Article  PubMed  Google Scholar 

Byrd GD, Prasad SM, Ripplinger CM, Cassilly TR, Schuessler RB, Boineau JP, Damiano RJ Jr (2005) Importance of geometry and refractory period in sustaining atrial fibrillation: testing the critical mass hypothesis. Circulation 112(9 Suppl):I7-13

PubMed  Google Scholar 

Lee AM, Aziz A, Didesch J, Clark KL, Schuessler RB, Damiano RJ Jr (2013) Importance of atrial surface area and refractory period in sustaining atrial fibrillation: testing the critical mass hypothesis. J Thorac Cardiovasc Surg 146:593–598

Article  PubMed  Google Scholar 

Valderrábano M, Kim YH, Yashima M, Wu TJ, Karagueuzian HS, Chen PS (2000) Obstacle-induced transition from ventricular fibrillation to tachycardia in isolated swine right ventricles: insights into the transition dynamics and implications for the critical mass. J Am Coll Cardiol 36:2000–2008

Article  PubMed  Google Scholar 

Barbhayia CR, Kumar S, Michaud GF (2015) Mapping atrial fibrillation: 2015 update. J Atr Fibrillation 8:1227

PubMed  PubMed Central  Google Scholar 

Roux JF, Gojraty S, Bala R, Liu CF, Dixit S, Hutchinson MD, Garcia F, Lin D, Callans DJ, Riley M, Marchlinski F, Gerstenfeld EP (2009) Effect of pulmonary vein isolation on the distribution of complex fractionated electrograms in humans. Heart Rhythm 6:156–160

Article  PubMed  Google Scholar 

Matsuo S, Yamane T, Date T, Tokutake K, Hioki M, Narui R, Ito K, Tanigawa S, Yamashita S, Tokuda M, Inada K, Arase S, Yagi H, Sugimoto K, Yoshimura M (2012) Substrate modification by pulmonary vein isolation and left atrial linear ablation in patients with persistent atrial fibrillation: its impact on complex-fractionated atrial electrograms. J Cardiovasc Electrophysiol 23:962–970

Article  PubMed  Google Scholar 

Konings KT, Smeets JL, Penn OC, Wellens HJ, Allessie MA (1997) Configuration of unipolar atrial electrograms during electrically induced atrial fibrillation in humans. Circulation 95:1231–1241

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif