The Segment Anything foundation model achieves favorable brain tumor auto-segmentation accuracy in MRI to support radiotherapy treatment planning

Niyazi M, Brada M, Chalmers AJ, Combs SE, Erridge SC, Fiorentino A, Grosu AL, Lagerwaard FJ, Minniti G, Mirimanoff RO, Ricardi U, Short SC, Weber DC, Belka C (2016) ESTRO-ACROP guideline “target delineation of glioblastomas”. Radiother Oncol 118(1):35–42. https://doi.org/10.1016/j.radonc.2015.12.003

Article  PubMed  Google Scholar 

Kruser TJ, Bosch WR, Badiyan SN, Bovi JA, Ghia AJ, Kim MM, Solanki AA, Sachdev S, Tsien C, Wang TJC, Mehta MP, McMullen KP (2019) NRG brain tumor specialists consensus guidelines for glioblastoma contouring. J Neurooncol 143(1):157–166. https://doi.org/10.1007/s11060-019-03152-9

Article  PubMed  PubMed Central  Google Scholar 

McCarroll RE, Beadle BM, Balter PA, Burger H, Cardenas CE, Dalvie S, Followill DS, Kisling KD, Mejia M, Naidoo K, Nelson CL, Peterson CB, Vorster K, Wetter J, Zhang L, Court LE, Yang J (2018) Retrospective Validation and Clinical Implementation of Automated Contouring of Organs at Risk in the Head and Neck: A Step Toward Automated Radiation Treatment Planning for Low- and Middle-Income Countries. J Glob Oncol 4:1–11. https://doi.org/10.1200/jgo.18.00055

Article  PubMed  Google Scholar 

Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18(2):203–211. https://doi.org/10.1038/s41592-020-01008-z

Article  CAS  PubMed  Google Scholar 

Isensee F, Jäger PF, Full PM, Vollmuth P (2020) Maier-Hein KH nnU-Net for brain tumor segmentation. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020. October, vol 4. Lima, Peru, pp 118–132

Google Scholar 

Huang Y, Khodabakhshi Z, Gomaa A, Schmidt M, Fietkau R, Guckenberger M, Andratschke N, Bert C, Tanadini-Lang S, Putz F (2024) Multicenter privacy-preserving model training for deep learning brain metastases autosegmentation. Radiother Oncol 198:110419. https://doi.org/10.1016/j.radonc.2024.110419

Article  PubMed  Google Scholar 

Xie C, Wang J, Zhang Z, Zhou Y, Xie L, Yuille A (2017) Adversarial examples for semantic segmentation and object detection. In: Proceedings of the IEEE international conference on computer vision, pp 1369–1378

Google Scholar 

Kirillov A, Mintun E, Ravi N, Mao H, Rolland C, Gustafson L, Xiao T, Whitehead S, Berg AC, Lo W‑Y (2023) Segment anything. Arxiv Prepr Arxiv 230402643. https://doi.org/10.48550/arXiv.2304.02643

Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, Burren Y, Porz N, Slotboom J, Wiest R, Lanczi L, Gerstner E, Weber MA, Arbel T, Avants BB, Ayache N, Buendia P, Collins DL, Cordier N, Corso JJ, Criminisi A, Das T, Delingette H, Demiralp C, Durst CR, Dojat M, Doyle S, Festa J, Forbes F, Geremia E, Glocker B, Golland P, Guo X, Hamamci A, Iftekharuddin KM, Jena R, John NM, Konukoglu E, Lashkari D, Mariz JA, Meier R, Pereira S, Precup D, Price SJ, Raviv TR, Reza SM, Ryan M, Sarikaya D, Schwartz L, Shin HC, Shotton J, Silva CA, Sousa N, Subbanna NK, Szekely G, Taylor TJ, Thomas OM, Tustison NJ, Unal G, Vasseur F, Wintermark M, Ye DH, Zhao L, Zhao B, Zikic D, Prastawa M, Reyes M, Van Leemput K (2015) The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024. https://doi.org/10.1109/tmi.2014.2377694

Article  PubMed  Google Scholar 

Henry T, Carré A, Lerousseau M, Estienne T, Robert C, Paragios N, Deutsch E (2020) Brain tumor segmentation with self-ensembled, deeply-supervised 3D U‑net neural networks: a BraTS 2020 challenge solution. In: Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020. Lima, Peru, pp 327–339

Google Scholar 

Niyazi M, Andratschke N, Bendszus M, Chalmers AJ, Erridge SC, Galldiks N, Lagerwaard FJ, Navarria P, Munck Af Rosenschöld P, Ricardi U, van den Bent MJ, Weller M, Belka C, Minniti G (2023) ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma. Radiother Oncol 184:109663. https://doi.org/10.1016/j.radonc.2023.109663

Article  PubMed  Google Scholar 

Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30(9):1323–1341. https://doi.org/10.1016/j.mri.2012.05.001

Article  PubMed  PubMed Central  Google Scholar 

Putz F, Mengling V, Perrin R, Masitho S, Weissmann T, Rosch J, Bauerle T, Janka R, Cavallaro A, Uder M, Amarteifio P, Doussin S, Schmidt MA, Dorfler A, Semrau S, Lettmaier S, Fietkau R, Bert C (2020) Magnetic resonance imaging for brain stereotactic radiotherapy : A review of requirements and pitfalls. Strahlenther Onkol 196(5):444–456. https://doi.org/10.1007/s00066-020-01604-0

Article  Google Scholar 

Wang Y, Jiang T (2013) Understanding high grade glioma: molecular mechanism, therapy and comprehensive management. Cancer Lett 331(2):139–146. https://doi.org/10.1016/j.canlet.2012.12.024

Article  CAS  PubMed  Google Scholar 

Seker-Polat F, Pinarbasi Degirmenci N, Solaroglu I, Bagci-Onder T (2022) Tumor Cell Infiltration into the Brain in Glioblastoma: From Mechanisms to Clinical Perspectives. Cancers. https://doi.org/10.3390/cancers14020443

Article  PubMed  PubMed Central  Google Scholar 

Back M, Jayamanne D, Brazier D, Newey A, Bailey D, Schembri G, Hsiao E, Khasraw M, Wong M, Kastelan M, Brown C, Wheeler H (2020) Pattern of failure in anaplastic glioma patients with an IDH1/2 mutation. Strahlenther Onkol 196(1):31–39. https://doi.org/10.1007/s00066-019-01467-0

Article  CAS  Google Scholar 

Huang Y, Bert C, Sommer P, Frey B, Gaipl U, Distel LV, Weissmann T, Uder M, Schmidt MA, Dörfler A, Maier A, Fietkau R, Putz F (2022) Deep learning for brain metastasis detection and segmentation in longitudinal MRI data. Med Phys. https://doi.org/10.1002/mp.15863

Article  PubMed  Google Scholar 

Neve OM, Chen Y, Tao Q, Romeijn SR, de Boer NP, Grootjans W, Kruit MC, Lelieveldt BPF, Jansen JC, Hensen EF, Verbist BM, Staring M (2022) Fully Automated 3D Vestibular Schwannoma Segmentation with and without Gadolinium-based Contrast Material: A Multicenter, Multivendor Study. Radiol Artif Intell 4(4):e210300. https://doi.org/10.1148/ryai.210300

Article  PubMed  PubMed Central  Google Scholar 

Erdur AC, Rusche D, Scholz D, Kiechle J, Fischer S, Llorián-Salvador Ó, Buchner JA, Nguyen MQ, Etzel L, Weidner J, Metz MC, Wiestler B, Schnabel J, Rueckert D, Combs SE, Peeken JC (2024) Deep learning for autosegmentation for radiotherapy treatment planning: State-of-the-art and novel perspectives. Strahlenther Onkol. https://doi.org/10.1007/s00066-024-02262-2

Article  Google Scholar 

Buchner JA, Kofler F, Etzel L, Mayinger M, Christ SM, Brunner TB, Wittig A, Menze B, Zimmer C, Meyer B, Guckenberger M, Andratschke N, El Shafie RA, Debus J, Rogers S, Riesterer O, Schulze K, Feldmann HJ, Blanck O, Zamboglou C, Ferentinos K, Wolff R, Eitz KA, Combs SE, Bernhardt D, Wiestler B, Peeken JC (2023) Development and external validation of an MRI-based neural network for brain metastasis segmentation in the AURORA multicenter study. Radiother Oncol 178:109425. https://doi.org/10.1016/j.radonc.2022.11.014

Article  CAS  PubMed  Google Scholar 

Lu SL, Xiao FR, Cheng JC, Yang WC, Cheng YH, Chang YC, Lin JY, Liang CH, Lu JT, Chen YF, Hsu FM (2021) Randomized multi-reader evaluation of automated detection and segmentation of brain tumors in stereotactic radiosurgery with deep neural networks. Neuro-Oncology 23(9):1560–1568. https://doi.org/10.1093/neuonc/noab071

Article  PubMed  PubMed Central  Google Scholar 

Ronneberger O, Fischer P, U‑net BT (2015) Convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI. Springer, Munich, Germany, pp 234–241 (18th International Conference)

Google Scholar 

Huang Y, Gomaa A, Höfler D, Schubert P, Gaipl U, Frey B, Fietkau R, Bert C, Putz F (2024) Principles of artificial intelligence in radiooncology. Strahlentherapie Onkol. https://doi.org/10.1007/s00066-024-02272-0

Article  PubMed  Google Scholar 

Putz F, Lamrani A, Weissmann T, Mansoorian S, Frey B, Bert C, Fietkau R (2021) Die OAR Turing-Test Studie: Ein verblindeter Vergleich von expertenbasierter Organ at Risk Erstellung und drei kommerziellen Autosegmentierungslösungen. Strahlenther Onkol 197(1):1–246. https://doi.org/10.1007/s00066-021-01791-4

Article  Google Scholar 

Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, Degroot J, Wick W, Gilbert MR, Lassman AB, Tsien C, Mikkelsen T, Wong ET, Chamberlain MC, Stupp R, Lamborn KR, Vogelbaum MA, van den Bent MJ, Chang SM (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28(11):1963–1972. https://doi.org/10.1200/jco.2009.26.3541

Article  PubMed  Google Scholar 

OpenAI (2023) GPT-4 Technical Report. Arxiv Prepr Arxiv:230308774. https://doi.org/10.48550/arXiv.2303.08774

留言 (0)

沒有登入
gif