Bray F, Laversanne M, Sung H, et al (2024) Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 74:. https://doi.org/10.3322/caac.21834
Mayrovitz HN (2022) Breast cancer. Exon Publications, Brisbane
Mitri Z, Constantine T, O’Regan R (2012) The HER2 receptor in breast cancer: pathophysiology, clinical use, and new advances in therapy. Chemother Res Pract 2012:1–7. https://doi.org/10.1155/2012/743193
Nascimento RG do, Otoni KM (2020) Histological and molecular classification of breast cancer: what do we know? Mastology 30: 1–8. https://doi.org/10.29289/25945394202020200024
Gabos Z, Sinha R, Hanson J et al (2006) Prognostic significance of human epidermal growth factor receptor positivity for the development of brain metastasis after newly diagnosed breast cancer. J Clin Oncol 24:5658–5663. https://doi.org/10.1200/JCO.2006.07.0250
Article CAS PubMed Google Scholar
Claret F, Vu T (2012) Trastuzumab: updated mechanisms of action and resistance in breast cancer. Front Oncol 2:62. https://doi.org/10.3389/fonc.2012.00062
Article PubMed PubMed Central Google Scholar
Feng Y, Spezia M, Huang S et al (2018) Breast cancer development and progression: risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis 5:77–106. https://doi.org/10.1016/j.gendis.2018.05.001
Article CAS PubMed PubMed Central Google Scholar
Rimawi MF, Schiff R, Osborne CK (2015) Targeting HER2 for the treatment of breast cancer. Annu Rev Med 66:111–128. https://doi.org/10.1146/annurev-med-042513-015127
Article CAS PubMed Google Scholar
Wynn CS, Tang S-C (2022) Anti-HER2 therapy in metastatic breast cancer: many choices and future directions. Cancer Metastasis Rev 41:193–209. https://doi.org/10.1007/s10555-022-10021-x
Article CAS PubMed PubMed Central Google Scholar
Vernieri C, Milano M, Brambilla M et al (2019) Resistance mechanisms to anti-HER2 therapies in HER2-positive breast cancer: current knowledge, new research directions and therapeutic perspectives. Crit Rev Oncol Hematol 139:53–66. https://doi.org/10.1016/j.critrevonc.2019.05.001
Yura Y, Masui A, Hamada M (2020) Inhibitors of ceramide- and sphingosine-metabolizing enzymes as sensitizers in radiotherapy and chemotherapy for head and neck squamous cell carcinoma. Cancers (Basel) 12:2062. https://doi.org/10.3390/cancers12082062
Article CAS PubMed Google Scholar
Kroll A, Cho HE, Kang MH (2020) Antineoplastic agents targeting sphingolipid pathways. Front Oncol 10:833
Article PubMed PubMed Central Google Scholar
Baran Y, Salas A, Senkal CE et al (2007) Alterations of ceramide/sphingosine 1-phosphate rheostat involved in the regulation of resistance to imatinib-induced apoptosis in K562 human chronic myeloid leukemia cells. J Biol Chem 282:10922–10934. https://doi.org/10.1074/jbc.M610157200
Article CAS PubMed Google Scholar
Ogretmen B, Hannun YA (2004) Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 4:604–616. https://doi.org/10.1038/nrc1411
Article CAS PubMed Google Scholar
Pyne NJ, El Buri A, Adams DR, Pyne S (2018) Sphingosine 1-phosphate and cancer. Adv Biol Regul 68:97–106. https://doi.org/10.1016/j.jbior.2017.09.006
Article CAS PubMed Google Scholar
Fang Z, Pyne S, Pyne NJ (2019) Ceramide and sphingosine 1-phosphate in adipose dysfunction. Prog Lipid Res 74:145–159. https://doi.org/10.1016/j.plipres.2019.04.001
Article CAS PubMed Google Scholar
Zheng X, Li W, Ren L et al (2019) The sphingosine kinase-1/sphingosine-1-phosphate axis in cancer: potential target for anticancer therapy. Pharmacol Ther 195:85–99. https://doi.org/10.1016/j.pharmthera.2018.10.011
Article CAS PubMed Google Scholar
Gupta P, Taiyab A, Hussain A et al (2021) Targeting the sphingosine kinase/sphingosine-1-phosphate signaling axis in drug discovery for cancer therapy. Cancers (Basel) 13:1898. https://doi.org/10.3390/cancers13081898
Article CAS PubMed Google Scholar
Ruckhäberle E, Rody A, Engels K et al (2008) Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer. Breast Cancer Res Treat 112:41–52. https://doi.org/10.1007/s10549-007-9836-9
Article CAS PubMed Google Scholar
Geffken K, Spiegel S (2018) Sphingosine kinase 1 in breast cancer. Adv Biol Regul 67:59–65. https://doi.org/10.1016/j.jbior.2017.10.005
Article CAS PubMed Google Scholar
Hii L-W, Chung FF-L, Mai C-W et al (2021) Sphingosine kinase 1 signaling in breast cancer: a potential target to tackle breast cancer stem cells. Front Mol Biosci 8:748470. https://doi.org/10.3389/fmolb.2021.748470
Article CAS PubMed PubMed Central Google Scholar
Patel DS, Ahmad F, Abu Sneineh M et al (2021) The importance of sphingosine kinase in breast cancer: a potential for breast cancer management. Cureus 1:1–13. https://doi.org/10.7759/cureus.13413
Shimizu Y, Furuya H, Tamashiro PM et al (2018) Genetic deletion of sphingosine kinase 1 suppresses mouse breast tumor development in an HER2 transgenic model. Carcinogenesis 39:47–55. https://doi.org/10.1093/carcin/bgx097
Article CAS PubMed Google Scholar
Mir SA, Dar A, Hamid L, et al (2024) Flavonoids as promising molecules in the cancer therapy: an insight. Curr Res Pharmacol Drug Discov 6:100167. https://doi.org/10.1016/j.crphar.2023.100167
Cárdenas M, Marder M, Blank VC, Roguin LP (2006) Antitumor activity of some natural flavonoids and synthetic derivatives on various human and murine cancer cell lines. Bioorganic Med Chem 14:2966–2971. https://doi.org/10.1016/j.bmc.2005.12.021
Cárdenas MG, Blank VC, Marder M, Roguin LP (2008) 2′-Nitroflavone induces cell cycle arrest and apoptosis in HeLa human cervical carcinoma cells. Cancer Lett 268:146–157. https://doi.org/10.1016/j.canlet.2008.03.062
Article CAS PubMed Google Scholar
Cárdenas MG, Zotta E, Marder M, Roguin LP (2009) In vitro induction of apoptosis and in vivo effects of a flavone nitroderivative in murine mammary adenocarcinoma cells. Int J Cancer 125:222–228. https://doi.org/10.1002/ijc.24361
Article CAS PubMed Google Scholar
Cárdenas MG, Blank VC, Marder MN, Roguin LP (2012) 2’-Nitroflavone induces apoptosis and modulates mitogen-activated protein kinase pathways in human leukaemia cells. Anticancer Drugs 23:815–826. https://doi.org/10.1097/CAD.0b013e328353f947
Article CAS PubMed Google Scholar
Heffernan-Stroud LA, Obeid LM (2013) Sphingosine kinase 1 in cancer. Adv Cancer Res 117:201–235. https://doi.org/10.1016/B978-0-12-394274-6.00007-8
Article CAS PubMed PubMed Central Google Scholar
Companioni O, Mir C, Garcia-Mayea Y, LLeonart ME (2021) Targeting sphingolipids for cancer therapy. Front Oncol 11:1–19. https://doi.org/10.3389/fonc.2021.745092
Boulter AC, Maurer BJ, Pogue M et al (2023) Phase I trial of intravenous fenretinide (4-HPR) plus safingol in advanced malignancies. Cancer Chemother Pharmacol 92:97–105. https://doi.org/10.1007/s00280-023-04543-6
Article CAS PubMed Google Scholar
Dickson MA, Carvajal RD, Merrill AHJ et al (2011) A phase I clinical trial of safingol in combination with cis
留言 (0)