Involvement of sphingosine-1-phosphate receptor 1 in pain insensitivity in a BTBR mouse model of autism spectrum disorder

Orefice LL, Mosko JR, Morency DT, Wells MF, Tasnim A, Mozeika SM, et al. Targeting peripheral somatosensory neurons to improve tactile-related phenotypes in ASD models. Cell. 2019;178(4):867-86.e24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

First MB, Yousif LH, Clarke DE, Wang PS, Gogtay N, Appelbaum PS. DSM-5-TR: overview of what's new and what's changed. World Psychiatry. 2022;21(2):218–9.

Marco EJ, Hinkley LB, Hill SS, Nagarajan SS. Sensory processing in autism: a review of neurophysiologic findings. Pediatr Res. 2011;69(5 Pt 2):48R-54R.

Article  PubMed  PubMed Central  Google Scholar 

Robertson CE, Baron-Cohen S. Sensory perception in autism. Nat Rev Neurosci. 2017;18(11):671–84.

Article  CAS  PubMed  Google Scholar 

Balasco L, Provenzano G, Bozzi Y. Sensory abnormalities in autism spectrum disorders: a focus on the tactile domain, from genetic mouse models to the clinic. Front Psychiatry. 2020;10:1016.

Article  PubMed  PubMed Central  Google Scholar 

Foss-Feig JH. Heacock JL and Cascio CJJRASD. Tactile responsiveness patterns and their association with core features in autism spectrum disorders. Res Autism Spectr Disord. 2012;6(1):337–44.

Allely CS. Pain sensitivity and observer perception of pain in individuals with autistic spectrum disorder. Sci World J. 2013;2013(ss03):916178.

Whitney DG, Shapiro DNJJp. National prevalence of pain among children and adolescents with autism spectrum disorders. JAMA Pediatr. 2019;173(12):1203–5.

Article  PubMed  PubMed Central  Google Scholar 

Klintwall L, Holm A, Eriksson M, Carlsson LH, Olsson MB, Hedvall A, et al. Sensory abnormalities in autism. A brief report. Res Dev Disabil. 2011;32(2):795–800.

Article  PubMed  Google Scholar 

Halayem S, Charfi N, Touati M, Mrabet A, Bouden A. Sensitivity to pain in autistic spectrum disorders: its links with self-gressivity. Tunis Med. 2018;96(8–9):501–4.

PubMed  Google Scholar 

Summers J, Shahrami A, Cali S, D’Mello C, Kako M, Palikucin-Reljin A, et al. Self-injury in autism spectrum disorder and intellectual disability: exploring the role of reactivity to pain and sensory input. Brain Sci. 2017;7(11):140.

Article  PubMed  PubMed Central  Google Scholar 

Furniss F, Biswas AB. Recent research on aetiology, development and phenomenology of self-injurious behaviour in people with intellectual disabilities: a systematic review and implications for treatment. J Intellect Disabil Res. 2012;56(5):453–75.

Article  CAS  PubMed  Google Scholar 

Orefice LL. Peripheral somatosensory neuron dysfunction: emerging roles in autism spectrum disorders. Neuroscience. 2020;445:120–9.

Article  CAS  PubMed  Google Scholar 

Carroll L, Braeutigam S, Dawes JM, Krsnik Z, Kostovic I, Coutinho E, et al. Autism spectrum disorders: multiple routes to, and multiple consequences of, abnormal synaptic function and connectivity. Neuroscientist. 2021;27(1):10–29.

Article  PubMed  Google Scholar 

Failla MD, Moana-Filho EJ, Essick GK, Baranek GT, Rogers BP, Cascio CJ. Initially intact neural responses to pain in autism are diminished during sustained pain. Autism. 2018;22(6):669–83.

Article  PubMed  Google Scholar 

Chien YL, Wu SW, Chu CP, Hsieh ST, Chao CC, Gau SS. Attenuated contact heat-evoked potentials associated with sensory and social-emotional symptoms in individuals with autism spectrum disorder. Sci Rep. 2017;7:36887.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vaughan S, McGlone F, Poole H, Moore DJ. A quantitative sensory testing approach to pain in autism spectrum disorders. J Autism Dev Disord. 2020;50(5):1607–20.

Article  PubMed  Google Scholar 

Orefice LL, Zimmerman AL, Chirila AM, Sleboda SJ, Head JP, Ginty DD. Peripheral Mechanosensory Neuron Dysfunction Underlies Tactile and Behavioral Deficits in Mouse Models of ASDs. Cell. 2016;166(2):299–313.

Han Q, Kim YH, Wang X, Liu D, Zhang ZJ, Bey AL, et al. SHANK3 deficiency impairs heat hyperalgesia and TRPV1 signaling in primary sensory neurons. Neuron. 2016;92(6):1279–93.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Usui N, Iwata K, Miyachi T, Takagai S, Wakusawa K, Nara T, et al. VLDL-specific increases of fatty acids in autism spectrum disorder correlate with social interaction. EBioMedicine. 2020;58:102917.

Article  PubMed  PubMed Central  Google Scholar 

Han W, Shuang L, Wang M, Gao J. Wu LJJoP and Jpn N. Potential serum biomarkers from a metabolomics study of autism. J Psychiatry Neurosci Jpn.  2016;40(5):140009.

Li Q, Shi Y, Li X, Yang Y, Zhang X, Xu L, et al. Proteomic-based approach reveals the involvement of apolipoprotein A-I in related phenotypes of autism spectrum disorder in the BTBR mouse model. Int J Mol Sci. 2022;23(23):15290.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lucaciu A, Brunkhorst R, Pfeilschifter JM, Pfeilschifter W, Subburayalu J. The S1P–S1PR axis in neurological disorders-insights into current and future therapeutic perspectives. Cells. 2020;9(6):1515.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Patti GJ, Yanes O, Shriver LP, Courade JP, Tautenhahn R, Manchester M, et al. Metabolomics implicates altered sphingolipids in chronic pain of neuropathic origin. Nat Chem Biol. 2012;8(3):232–4.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Z, Doyle TM, Luongo L, Largent-Milnes TM and Salvemini DJPotNAoS. Sphingosine-1-phosphate receptor 1 activation in astrocytes contributes to neuropathic pain. Proc Natl Acad Sci U S A. 2019;116(21):10557–62.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li C, Li JN, Kays J, Guerrero M, Nicol GD. Sphingosine 1-phosphate enhances the excitability of rat sensory neurons through activation of sphingosine 1-phosphate receptors 1 and/or 3. J Neuroinflammation. 2015;12:70.

Article  PubMed  PubMed Central  Google Scholar 

Hill RZ, Hoffman BU, Morita T, Campos SM, Lumpkin EA, Brem RB, et al. The signaling lipid sphingosine 1-phosphate regulates mechanical pain. Elife. 2018;7:e33285.

Google Scholar 

Du X, Gao H, Jaffe D, Zhang H, Gamper N. M-type K(+) channels in peripheral nociceptive pathways. Br J Pharmacol. 2018;175(12):2158–72.

Article  CAS  PubMed  Google Scholar 

Gamal El-Din TM, Lantin T, Tschumi CW, Juarez B, Quinlan M, Hayano JH, et al. Autism-associated mutations in K(V)7 channels induce gating pore current. Proc Natl Acad Sci U S A. 2021;118(45): e2112666118.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Barkai O, Goldstein RH, Caspi Y, Katz B, Lev S, Binshtok AM. The role of Kv7/M potassium channels in controlling ectopic firing in nociceptors. Front Mol Neurosci. 2017;10:181.

Article  PubMed  PubMed Central  Google Scholar 

Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. 1988;33(1):87–107.

Article  PubMed  Google Scholar 

Costa B, Comelli F, Bettoni I, Colleoni M, Giagnoni G. The endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: involvement of CB(1), TRPV1 and PPARgamma receptors and neurotrophic factors. Pain. 2008;139(3):541–50.

Article  CAS  PubMed  Google Scholar 

Malheiros JM, Lima M, Avanzi RD, Gomes da Silva S, Suchecki D, Guinsburg R, et al. Repetitive noxious neonatal stimuli increases dentate gyrus cell proliferation and hippocampal brain-derived neurotrophic factor levels. Hippocampus. 2014;24(4):415–423.

Bonin RP, Bories C, De Koninck Y. A simplified up-down method (SUDO) for measuring mechanical nociception in rodents using von Frey filaments. Mol Pain. 2014;10:26.

Article  PubMed  PubMed Central  Google Scholar 

Tegeder I, Del Turco D, Schmidtko A, Sausbier M, Feil R, Hofmann F, et al. Reduced inflammatory hyperalgesia with preservation of acute thermal nociception in mice lacking cGMP-dependent protein kinase I. Proc Natl Acad Sci U S A. 2004;101(9):3253–7.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kennedy HS, Jones C 3rd, Caplazi P. Comparison of standard laminectomy with an optimized ejection method for the removal of spinal cords from rats and mice. J Histotechnol. 2013;36(3):86–91.

留言 (0)

沒有登入
gif