Clinical implications of persistently increased blood urea nitrogen/serum creatinine ratio (PI-BUN/Cr) in severe COVID-19 patients

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet (London England). 2020;395(10229):1033–4. https://doi.org/10.1016/S0140-6736(20)30628-0.

Article  PubMed  CAS  Google Scholar 

Baum N, Dichoso CC, Carlton CE. Blood urea nitrogen and serum creatinine. Physiology and interpretations. Urology. 1975;5(5):583-8. https://doi.org/10.1016/0090-4295(75)90105-3. PMID: 1093306.

Wang H, Ran J, Jiang T. Urea. Subcell Biochem. 2014;73:7–29. https://doi.org/10.1007/978-94-017-9343-8_2.

Article  PubMed  CAS  Google Scholar 

Tjendra Y, Mana A, Espejo AF, Akgun AP, Millan Y, Gomez-Fernandez NC, C., Cray C. Predicting Disease Severity and Outcome in COVID-19 patients: a review of multiple biomarkers. Arch Pathol Lab Med. 2020;144(12):1465–74. https://doi.org/10.5858/arpa.2020-0471-SA.

Article  PubMed  CAS  Google Scholar 

Gunst J, Kashani KB, Hermans G. The urea-creatinine ratio as a novel biomarker of critical illness-associated catabolism. Intensive Care Med. 2019;45(12):1813–5. https://doi.org/10.1007/s00134-019-05810-y.

Article  PubMed  Google Scholar 

Dupuis C, Bret A, Janer A, Guido O, Bouzgarrou R, Dopeux L, Hernandez G, Mascle O, Calvet L, Thouy F, Grapin K, Couhault P, Kinda F, Laurichesse G, Bonnet B, Adda M, Boirie Y, Souweine B. Association of nitrogen balance trajectories with clinical outcomes in critically ill COVID-19 patients: a retrospective cohort study. Clin Nutr. 2022;41(12):2895–902. https://doi.org/10.1016/j.clnu.2022.08.023.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Beier K, Eppanapally S, Bazick HS, Chang D, Mahadevappa K, Gibbons FK, Christopher KB. Elevation of blood urea nitrogen is predictive of long-term mortality in critically ill patients independent of normal creatinine. Crit Care Med. 2011;39(2):305–13. https://doi.org/10.1097/CCM.0b013e3181ffe22a.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chan, L., Chaudhary, K., Saha, A., Chauhan, K., Vaid, A., Zhao, S., Paranjpe, I.,Somani, S., Richter, F., Miotto, R., Lala, A., Kia, A., Timsina, P., Li, L., Freeman,R., Chen, R., Narula, J., Just, A. C., Horowitz, C., Fayad, Z., … on behalf of the Mount Sinai COVID Informatics Center (MSCIC) (2021). AKI in Hospitalized Patients with COVID-19. Journal of the American Society of Nephrology: JASN, 32(1), 151–160. https://doi.org/10.1681/ASN.2020050615.

Marasco G, Maida M, Morreale GC, Licata M, Renzulli M, Cremon C, Stanghellini V, Barbara G. Gastrointestinal bleeding in COVID-19 patients: a systematic review with Meta-analysis. Can J Gastroenterol Hepatol. 2021;2021:2534975. https://doi.org/10.1155/2021/2534975.

Article  PubMed  PubMed Central  Google Scholar 

Murata A, Kasai T, Matsue Y, Matsumoto H, Yatsu S, Kato T, Suda S, Hiki M, Takagi A, Daida H. Relationship between blood urea nitrogen-to-creatinine ratio at hospital admission and long-term mortality in patients with acute decompensated heart failure. Heart Vessels. 2018;33(8):877–85. https://doi.org/10.1007/s00380-018-1135-3.

Article  PubMed  Google Scholar 

Inaguma D, Koide S, Ito E, Takahashi K, Hayashi H, Hasegawa M, Yuzawa Y, AICOPP group. Ratio of blood urea nitrogen to serum creatinine at initiation of dialysis is associated with mortality: a multicenter prospective cohort study. Clin Exp Nephrol. 2018;22(2):353–64. https://doi.org/10.1007/s10157-017-1458-x.

Article  PubMed  CAS  Google Scholar 

Feinfeld DA, Bargouthi H, Niaz Q, Carvounis CP. Massive and disproportionate elevation of blood urea nitrogen in acute azotemia. Int Urol Nephrol. 2002;34(1):143–5. https://doi.org/10.1023/a:1021346401701.

Article  PubMed  CAS  Google Scholar 

Ok F, Erdogan O, Durmus E, Carkci S, Canik A. Predictive values of blood urea nitrogen/creatinine ratio and other routine blood parameters on disease severity and survival of COVID-19 patients. J Med Virol. 2021;93(2):786–93. https://doi.org/10.1002/jmv.26300.

Article  PubMed  CAS  Google Scholar 

Ma H, Lin S, Xie Y, Mo S, Huang Q, Ge H, Shi Z, Li S, Zhou D. Association between BUN/creatinine ratio and the risk of in-hospital mortality in patients with trauma-related acute respiratory distress syndrome: a single-centre retrospective cohort from the MIMIC database. BMJ open. 2023;13(4):e069345. https://doi.org/10.1136/bmjopen-2022-069345.

Article  PubMed  PubMed Central  Google Scholar 

Van den Berghe G, de Zegher F, Baxter RC, Veldhuis JD, Wouters P, Schetz M, Verwaest C, Van der Vorst E, Lauwers P, Bouillon R, Bowers CY. Neuroendocrinology of prolonged critical illness: effects of exogenous thyrotropin-releasing hormone and its combination with growth hormone secretagogues. J Clin Endocrinol Metab. 1998;83(2):309–19. https://doi.org/10.1210/jcem.83.2.4575.

Article  PubMed  Google Scholar 

Ahmad MS, Shaik RA, Ahmad RK, Yusuf M, Khan M, Almutairi AB, Alghuyaythat WKZ, Almutairi SB. LONG COVID: an insight. Eur Rev Med Pharmacol Sci. 2021;25(17):5561–77. https://doi.org/10.26355/eurrev_202109_26669.

Article  PubMed  CAS  Google Scholar 

Haines RW, Zolfaghari P, Wan Y, Pearse RM, Puthucheary Z, Prowle JR. Elevated urea-to-creatinine ratio provides a biochemical signature of muscle catabolism and persistent critical illness after major trauma. Intensive Care Med. 2019;45(12):1718–31. https://doi.org/10.1007/s00134-019-05760-5.

Article  PubMed  CAS  Google Scholar 

Puthucheary, Z. A., Astin, R., Mcphail, M. J. W., Saeed, S., Pasha, Y., Bear, D. E.,Constantin, D., Velloso, C., Manning, S., Calvert, L., Singer, M., Batterham, R. L.,Gomez-Romero, M., Holmes, E., Steiner, M. C., Atherton, P. J., Greenhaff, P., Edwards,L. M., Smith, K., Harridge, S. D., … Montgomery, H. E. (2018). Metabolic phenotype of skeletal muscle in critical illness. Thorax, 73(10), 926–935. https://doi.org/10.1136/thoraxjnl-2017-211073.

Prowle JR, Kolic I, Purdell-Lewis J, Taylor R, Pearse RM, Kirwan CJ. Serum creatinine changes associated with critical illness and detection of persistent renal dysfunction after AKI. Clin J Am Soc Nephrology: CJASN. 2014;9(6):1015–23. https://doi.org/10.2215/CJN.11141113.

Article  CAS  Google Scholar 

Iwashyna TJ, Hodgson CL, Pilcher D, Bailey M, van Lint A, Chavan S, Bellomo R. Timing of onset and burden of persistent critical illness in Australia and New Zealand: a retrospective, population-based, observational study. Lancet Respiratory Med. 2016;4(7):566–73. https://doi.org/10.1016/S2213-2600(16)30098-4.

Article  Google Scholar 

Sklar AH, Riesenberg LA, Ur Rehman A, Smith S, Rivera-Padilla H. Prerenal azotemia: differentiation of hyperureagenesis from renal hypoperfusion using urinary urea nitrogen data. Int J Artif Organs. 1996;19(3):164–9.

Article  PubMed  CAS  Google Scholar 

Husain-Syed F, Slutsky AS, Ronco C. Lung-kidney cross-talk in the critically ill patient. Am J Respir Crit Care Med. 2016;194(4):402–14. https://doi.org/10.1164/rccm.201602-0420CP.

Article  PubMed  CAS  Google Scholar 

RECOVERY Collaborative Group, Horby, P., Lim, W. S., Emberson, J. R., Mafham, M.,Bell, J. L., Linsell, L., Staplin, N., Brightling, C., Ustianowski, A., Elmahi, E.,Prudon, B., Green, C., Felton, T., Chadwick, D., Rege, K., Fegan, C., Chappell, L.C., Faust, S. N., Jaki, T., … Landray, M. J. (2021). Dexamethasone in Hospitalized Patients with Covid-19. The New England journal of medicine, 384(8), 693–704. https://doi.org/10.1056/NEJMoa2021436.

Siew ED, Matheny ME. Choice of reference serum creatinine in defining acute kidney Injury. Nephron. 2015;131(2):107–12. https://doi.org/10.1159/000439144.

Article  PubMed  CAS  Google Scholar 

KDIGO Clinical Practice Guideline for Acute Kidney Injury. Published. March 2012. https://kdigo.org/wp-content/uploads/2016/10/KDIGO-2012-AKI-Guideline-English.pdf. Accessed: August 12, 2021.

Levey AS, Inker LA, Coresh J. GFR estimation: from physiology to public health. Am J Kidney Diseases: Official J Natl Kidney Foundation. 2014;63(5):820–34. https://doi.org/10.1053/j.ajkd.2013.12.006.

Article  Google Scholar 

Kidney Disease. Improving global outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3:1–150.

Google Scholar 

Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, Li J, Yao Y, Ge S, Xu G. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97(5):829–38. https://doi.org/10.1016/j.kint.2020.03.005.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Li X, Ma X. Acute respiratory failure in COVID-19: is it typical ARDS? Crit Care (London England). 2020;24(1):198. https://doi.org/10.1186/s13054-020-02911-9.

Article  Google Scholar 

Rachoin JS, Daher R, Moussallem C, Milcarek B, Hunter K, Schorr C, Abboud M, Henry P, Weisberg LS. The fallacy of the BUN:creatinine ratio in critically ill patients. Nephrol dialysis Transplantation: Official Publication Eur Dialysis Transpl Association - Eur Ren Association. 2012;27(6):2248–54. https://doi.org/10.1093/ndt/gfr705.

Article  CAS  Google Scholar 

Kaufman J, Dhakal M, Patel B, Hamburger R. Community-acquired acute renal failure. Am J Kidney Diseases: Official J Natl Kidney Foundation. 1991;17(2):191–8. https://doi.org/10.1016/s0272-6386(12)81128-0.

Article  CAS  Google Scholar 

Bellomo R, Bagshaw S, Langenberg C, Ronco C. Pre-renal azotemia: a flawed paradigm in critically ill septic patients? Contrib Nephrol. 2007;156:1–9. https://doi.org/10.1159/000102008.

Article  PubMed 

留言 (0)

沒有登入
gif