Stemness in solid malignancies: coping with immune attack

Mellman, I., Coukos, G. & Dranoff, G. Cancer immunotherapy comes of age. Nature 480, 480–489 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fesnak, A. D., June, C. H. & Levine, B. L. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat. Rev. Cancer 16, 566–581 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. Science 359, 1350–1355 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Baldominos, P. et al. Quiescent cancer cells resist T cell attack by forming an immunosuppressive niche. Cell 185, 1694–1708.e19 (2022). This study shows a niche-dependent mechanism of immune evasion in which CSCs create a metabolically challenging niche that suppresses the function of T cells and other immune cells.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Miao, Y. et al. Adaptive immune resistance emerges from tumor-initiating stem cells. Cell 117, 1172–1186.e14 (2019). This study describes a population of CSCs in SCC that escapes T cell attack in a cell-autonomous manner by expressing CD80 that binds to T cells and drives their exhaustion.

Article  Google Scholar 

Nguyen, L. V., Vanner, R., Dirks, P. & Eaves, C. J. Cancer stem cells: an evolving concept. Nat. Rev. Cancer 12, 133–143 (2012).

Article  CAS  PubMed  Google Scholar 

Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23, 1124–1134 (2017).

Article  CAS  PubMed  Google Scholar 

Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

Article  CAS  PubMed  Google Scholar 

Ricci-Vitiani, L. et al. Identification and expansion of human colon-cancer-initiating cells. Nature 445, 111–115 (2007).

Article  CAS  PubMed  Google Scholar 

Loh, J. J. & Ma, S. Hallmarks of cancer stemness. Cell Stem Cell 31, 617–639 (2024).

Article  CAS  PubMed  Google Scholar 

Oskarsson, T., Batlle, E. & Massague, J. Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell 14, 306–321 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Massagué, J. & Ganesh, K. Metastasis-initiating cells and ecosystems. Cancer Discov. 11, 971–994 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Correia, A. L. Locally sourced: site-specific immune barriers to metastasis. Nat. Rev. Immunol. 23, 522–538 (2023).

Article  CAS  PubMed  Google Scholar 

Niec, R. E., Rudensky, A. Y. & Fuchs, E. Inflammatory adaptation in barrier tissues. Cell 184, 3361–3375 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Agudo, J. et al. Quiescent tissue stem cells evade immune surveillance. Immunity 48, 271–285.e5 (2018). This study shows that quiescent normal adult stem cells resist CD8+T cell attack through downregulation of the antigen-presenting machinery.

Article  CAS  PubMed  PubMed Central  Google Scholar 

van de Weijer, M. L., Luteijn, R. D. & Wiertz, E. J. H. J. Viral immune evasion: lessons in MHC class I antigen presentation. Semin. Immunol. 27, 125–137 (2015).

Article  PubMed  Google Scholar 

Orr, M. T. & Lanier, L. L. Natural killer cell education and tolerance. Cell 142, 847–856 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Naik, S. & Fuchs, E. Inflammatory memory and tissue adaptation in sickness and in health. Nature 607, 249–255 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Naik, S. et al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 570, 475–480 (2017). This work identifies the ability of tissue stem cells to respond and adapt to inflammation and acquire epigenetic changes that allow them to respond more efficiently to subsequent tissue injury.

Article  Google Scholar 

Larsen, S. B. et al. Establishment, maintenance, and recall of inflammatory memory. Cell Stem Cell 28, 1758–1774.e8 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ordovas-Montanes, J. et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature 560, 649–654 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jones, D. L. & Wagers, A. J. No place like home: anatomy and function of the stem cell niche. Nat. Rev. Mol. Cell Biol. 9, 11–21 (2008).

Article  CAS  PubMed  Google Scholar 

Cohen, J. N. et al. Regulatory T cells in skin mediate immune privilege of the hair follicle stem cell niche. Sci. Immunol. 9, eadh0152 (2024).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ali, N. et al. Regulatory T cells in skin facilitate epithelial stem cell differentiation. Cell 169, 1119–1129.e11 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fujisaki, J. et al. In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474, 216–219 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu, C., Xu, Y., Yang, G., Cheung, T. H. & Chen, J. Niche inflammatory signals control oscillating mammary regeneration and protect stem cells from cytotoxic stress. Stem Cell 31, 89–105.e6 (2024).

CAS  Google Scholar 

Chakrabarti, R. et al. Notch ligand Dll1 mediates cross-talk between mammary stem cells and the macrophageal niche. Science 360, eaan4153 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Ge, Y. et al. Stem cell lineage infidelity drives wound repair and cancer. Cell 169, 636–650.e14 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luan, J. et al. CD80 on skin stem cells promotes local expansion of regulatory T cells upon injury to orchestrate repair within an inflammatory environment. Immunity 57, 1071–1086.e7 (2024). This work shows how tissue stem cells express CD80 to pTregcells and protect themselves from inflammation.

Article  CAS  PubMed  Google Scholar 

Biton, M. et al. T helper cell cytokines modulate intestinal stem cell renewal and differentiation. Cell 175, 1307–1320.e22 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hernández-Malmierca, P. et al. Antigen presentation safeguards the integrity of the hematopoietic stem cell pool. Cell Stem Cell 29, 760–775.e10 (2022). This work shows that HSCs express MHC-II, which allows immune surveillance by CD4+T cells during tumour initiation.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif