Wink M. Current understanding of modes of action of multicomponent bioactive phytochemicals: potential for nutraceuticals and antimicrobials. Annu Rev Food Sci Technol. 2022;13:337–59. https://doi.org/10.1146/annurev-food-052720-100326.
Article PubMed CAS Google Scholar
Madkour L. Oxidative stress and oxidative damage-induced cell death. Reactive oxygen species (ROS), nanoparticles, and endoplasmic reticulum (ER) stress-induced cell death mechanisms. Cambridge, MA, USA: Academic; 2020. pp. 175–97.
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. WAO J. 2012;5:9–19.
Jiang S, Liu H, Li C. Dietary regulation of oxidative stress in chronic metabolic diseases. Foods. 2021;10(8):1854. https://doi.org/10.3390/foods10081854.
Article PubMed PubMed Central CAS Google Scholar
Machiela E, Rudich PD, Traa A, Anglas U, Soo SK, Senchuk MM, et al. Targeting mitochondrial network disorganization is protective in C. Elegans models of Huntington’s disease. Aging Dis. 2021;12(7):1753. https://doi.org/10.14336/AD.2021.0404.
Article PubMed PubMed Central Google Scholar
Ross CA, Tabrizi SJ. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011;10(1):83–98.
Article PubMed CAS Google Scholar
Van Wyk B-E, Wink M. Phytomedicines, herbal drugs & plant poisons: Briza; 2015.
Van Wyk B-E, Wink M. Medicinal plants of the world. Cabi; 2018.
Olayinka J, Eduviere A, Adeoluwa O, Fafure A, Adebanjo A, Ozolua R. Quercetin mitigates memory deficits in scopolamine mice model via protection against neuroinflammation and neurodegeneration. Life Sci. 2022;292:120326. https://doi.org/10.1016/j.lfs.2022.120326.
Article PubMed CAS Google Scholar
Zamani F, Samiei F, Mousavi Z, Azari MR, Seydi E, Pourahmad J. Apigenin ameliorates oxidative stress and mitochondrial damage induced by multiwall carbon nanotubes in rat kidney mitochondria. J Biochem Mol Toxicol. 2021;35(6):1–7. https://doi.org/10.1002/jbt.22762.
Article PubMed CAS Google Scholar
Zhou D-D, Luo M, Huang S-Y, Saimaiti A, Shang A, Gan R-Y, et al. Effects and mechanisms of resveratrol on aging and age-related diseases. Oxid Med Cell Longev. 2021;2021:1–15. https://doi.org/10.1155/2021/9932218.
Alcázar Magaña A, Kamimura N, Soumyanath A, Stevens JF, Maier CS. Caffeoylquinic acids: Chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity. Plant J. 2021;107(5):1299–319. https://doi.org/10.1111/tpj.15390.
Article PubMed CAS Google Scholar
Fricker RA, Green EL, Jenkins SI, Griffin SM. The influence of nicotinamide on health and disease in the central nervous system. IJTR. 2018;11:1178646918776658. https://doi.org/10.1177/1178646918776658.
Article PubMed PubMed Central Google Scholar
Pero RW. Health consequences of catabolic synthesis of hippuric acid in humans. Curr Clin Pharmacol. 2010;5(1):67–73. https://doi.org/10.2174/157488410790410588.
Article PubMed CAS Google Scholar
Pero RW, Lund H, Leanderson T. Antioxidant metabolism induced by quinic acid increased urinary excretion of tryptophan and nicotinamide. Phytother Res. 2009;23(3):335–46. https://doi.org/10.1002/ptr.2628.
Article PubMed CAS Google Scholar
Kwon YK, Choi SJ, Kim CR, Kim JK, Kim Y-J, Choi JH, et al. Antioxidant and cognitive-enhancing activities of Arctium lappa L. roots in Aβ1-42-induced mouse model. Appl Biol Chem. 2016;59(4):553–65. https://doi.org/10.1007/s13765-016-0195-2.
Zhang L, Zhang J, Zhao B, Zhao-Wilson X. Quinic acid could be a potential rejuvenating natural compound by improving survival of Caenorhabditis elegans under deleterious conditions. Rejuvenation Res. 2012;15(6):573–83. https://doi.org/10.1089/rej.2012.1342.
Article PubMed PubMed Central CAS Google Scholar
Liu L, Liu Y, Zhao J, Xing X, Zhang C, Meng H. Neuroprotective effects of D-(-)-quinic acid on aluminum chloride-induced dementia in rats. eCAM. 2020;2020. https://doi.org/10.1155/2020/5602597.
Baumeister R, Ge L. The worm in us–Caenorhabditis elegans as a model of human disease. Trends Biotechnol. 2002;20(4):147–8. https://doi.org/10.1016/S0167-7799(01)01925-4.
Article PubMed CAS Google Scholar
Li J, Le W. Modeling neurodegenerative diseases in Caenorhabditis elegans. Exp Neurol. 2013;250:94–103. https://doi.org/10.1016/j.expneurol.2013.09.024.
Article PubMed CAS Google Scholar
Sluder AE, Baumeister R. From genes to drugs: target validation in Caenorhabditis elegans. Drug Discov Today Technol. 2004;1(2):171–7. https://doi.org/10.1016/j.ddtec.2004.09.007.
Article PubMed CAS Google Scholar
Roxo M, Wink M. The use of the nematode Caenorhabditis elegans to study antioxidant and longevity-promoting plant secondary metabolites. New Findings from Natural Substances: Bentham Science; 2022. pp. 133–63.
Blackwell TK, Steinbaugh MJ, Hourihan JM, Ewald CY, Isik M. SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radical Biol Med. 2015;88:290–301. https://doi.org/10.1016/j.freeradbiomed.2015.06.008.
Dehghan E, Zhang Y, Saremi B, Yadavali S, Hakimi A, Dehghani M, et al. Hydralazine induces stress resistance and extends C. Elegans lifespan by activating the NRF2/SKN-1 signalling pathway. Nat Commun. 2017;8(1):2223. https://doi.org/10.1038/s41467-017-02394-3.
Article PubMed PubMed Central CAS Google Scholar
Tullet JM, Green JW, Au C, Benedetto A, Thompson MA, Clark E, et al. The SKN-1/Nrf2 transcription factor can protect against oxidative stress and increase lifespan in C. Elegans by distinct mechanisms. Aging Cell. 2017;16(5):1191–4. https://doi.org/10.1111/acel.12627.
Article PubMed PubMed Central CAS Google Scholar
Walker AK, See R, Batchelder C, Kophengnavong T, Gronniger JT, Shi Y, et al. A conserved transcription motif suggesting functional parallels between Caenorhabditis elegans SKN-1 and Cap’n’Collar-related basic leucine zipper proteins. J Biol Chem. 2000;275(29):22166–71. https://doi.org/10.1074/jbc.M001746200.
Article PubMed CAS Google Scholar
Boasquívis PF, Silva GMM, Paiva FA, Cavalcanti RM, Nunez CV, de Paula Oliveira R. Guarana (Paullinia cupana) extract protects Caenorhabditis elegans models for Alzheimer disease and Huntington disease through activation of antioxidant and protein degradation pathways. Oxid Med Cell Longev. 2018;2018. https://doi.org/10.1155/2018/9241308.
Cordeiro LM, Machado ML, da Silva AF, Baptista FBO, da Silveira TL, Soares FAA, et al. Rutin protects Huntington’s disease through the insulin/IGF1 (IIS) signaling pathway and autophagy activity: study in Caenorhabditis elegans model. FCT. 2020;141:111323. https://doi.org/10.1016/j.fct.2020.111323.
Thabit S, Handoussa H, Roxo M, El Sayed NS, de Azevedo BC, Wink M. Evaluation of antioxidant and neuroprotective activities of Cassia fistula (L.) using the Caenorhabditis elegans model. PeerJ. 2018;6:e5159. https://doi.org/10.7717/peerj.5159.
Article PubMed PubMed Central CAS Google Scholar
Chaubey MG, Patel SN, Rastogi RP, Madamwar D, Singh NK. Cyanobacterial pigment protein allophycocyanin exhibits longevity and reduces Aβ-mediated paralysis in C. Elegans: complicity of FOXO and NRF2 ortholog DAF-16 and SKN-1. 3 Biotech. 2020;10:1–11. https://doi.org/10.1007/s13205-020-02314-1.
Bagoudou AF, Zheng Y, Nakabayashi M, Rawdkuen S, Park H-Y, Vattem DA, et al. GlochLittoraletorale leaf extract exhibits neuroprotective effects in Caenorhabditis elegans via DAF-16 activation. Molecules. 2021;26(13):3958. https://doi.org/10.3390/molecules26133958.
Article PubMed PubMed Central CAS Google Scholar
Bicca Obetine Baptista F, Arantes LP, Machado ML, da Silva AF, Marafiga Cordeiro L, da Silveira TL, et al. Diphenyl diselenide protects a Caenorhabditis elegans model for Huntington’s disease by activation of the antioxidant pathway and a decrease in protein aggregation. Metallomics. 2020;12(7):1142–58. https://doi.org/10.1039/d0mt00074d.
留言 (0)