Influence of Enhanced Synthesis of Exopolysaccharides in Rhizobium ruizarguesonis and Overproduction of Plant Receptor to these Compounds on Colonizing Activity of Rhizobia in Legume and Non-Legume Plants and Plant Resistance to Phytopathogenic Fungi

Flores-Félix J-D, Marcos-García M, Silva LR et al (2015) Rhizobium as plant probiotic for strawberry production under microcosm conditions. Symbiosis 67:25–32. https://doi.org/10.1007/s13199-015-0373-8

Article  CAS  Google Scholar 

Flores-Félix JD, Menéndez E, Rivera LP et al (2013) Use of Rhizobium leguminosarum as a potential biofertilizer for Lactuca sativa and Daucus carota crops. J Plant Nutr Soil Sci 176:876–882. https://doi.org/10.1002/jpln.201300116

Article  CAS  Google Scholar 

Jiménez-Gómez A, Flores-Félix JD, García-Fraile P et al (2018) Probiotic activities of Rhizobium laguerreae on growth and quality of spinach. Sci Rep 8:295. https://doi.org/10.1038/s41598-017-18632-z

Article  PubMed  PubMed Central  CAS  Google Scholar 

Reddy PM, Ladha JK, So RB et al (1997) Rhizobial communication with rice roots: Induction of phenotypic changes, mode of invasion and extent of colonization. Opportunities for Biological Nitrogen Fixation in Rice and Other Non-Legumes. Springer, Dordrecht, pp 81–98

Chapter  Google Scholar 

García-Fraile P, Carro L, Robledo M et al (2012) Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS ONE 7:e38122. https://doi.org/10.1371/journal.pone.0038122

Article  PubMed  PubMed Central  CAS  Google Scholar 

Little BJ, Wagner P, Maki JS et al (1986) Factors influencing the adhesion of microorganisms to surfaces. J Adhes 20:187–210. https://doi.org/10.1080/00218468608071236

Article  CAS  Google Scholar 

Smit G, Swart S, Lugtenberg BJJ, Kijne JW (1992) Molecular mechanisms of attachment of Rhizobium bacteria to plant roots. Mol Microbiol 6:2897–2903. https://doi.org/10.1111/j.1365-2958.1992.tb01748.x

Article  PubMed  CAS  Google Scholar 

Ausmees N, Jacobsson K, Lindberg M (2001) A unipolarly located, cell-surface-associated agglutinin, RapA, belongs to a family of Rhizobium-adhering proteins (Rap) in Rhizobium leguminosarum bv. trifolii. Microbiology 147:549–559. https://doi.org/10.1099/00221287-147-3-549

Article  PubMed  CAS  Google Scholar 

Mongiardini EJ, Pérez-Giménez J, Althabegoiti MJ et al (2009) Overproduction of the rhizobial adhesin RapA1 increases competitiveness for nodulation. Soil Biol Biochem 41:2017–2020. https://doi.org/10.1016/j.soilbio.2009.07.016

Article  CAS  Google Scholar 

Dazzo FB, Truchet GL, Sherwood JE et al (1984) Specific phases of root hair attachment in the Rhizobium trifolii-clover symbiosis. Appl Environ Microbiol 48:1140–1150. https://doi.org/10.1128/aem.48.6.1140-1150.1984

Article  PubMed  PubMed Central  CAS  Google Scholar 

Via VD, Zanetti ME, Blanco F (2016) How legumes recognize rhizobia. Plant Signal Behav 11:e1120396. https://doi.org/10.1080/15592324.2015.1120396

Article  PubMed  CAS  Google Scholar 

Hirsch AM (1999) Role of lectins (and rhizobial exopolysaccharides) in legume nodulation. Curr Opin Plant Biol 2:320–326. https://doi.org/10.1016/S1369-5266(99)80056-9

Article  PubMed  CAS  Google Scholar 

Laus MC, Logman TJ, Lamers GE et al (2006) A novel polar surface polysaccharide from Rhizobium leguminosarum binds host plant lectin. Mol Microbiol 59:1704–1713. https://doi.org/10.1111/j.1365-2958.2006.05057.x

Article  PubMed  CAS  Google Scholar 

Hoedemaeker FJ, Richardson M, Díaz CL et al (1994) Pea (Pisum sativum L.) seed isolectins 1 and 2 and pea root lectin result from carboxypeptidase-like processing of a single gene product. Plant Mol Biol 24:75–81. https://doi.org/10.1007/BF00040575

Article  PubMed  CAS  Google Scholar 

Vershinina ZR, Baymiev AK, Blagova DK et al (2012) Artificial colonization of non-symbiotic plants roots with the use of lectins. Symbiosis 56:25–33. https://doi.org/10.1007/s13199-012-0156-4

Article  CAS  Google Scholar 

Mithöfer A (2002) Suppression of plant defence in rhizobia-legume symbiosis. Trends Plant Sci 7:440–444. https://doi.org/10.1016/S1360-1385(02)02336-1

Article  PubMed  Google Scholar 

Oleńska E, Małek W, Kotowska U et al (2021) Exopolysaccharide carbohydrate structure and biofilm formation by Rhizobium leguminosarum bv. trifolii strains inhabiting nodules of trifoliumrepens growing on an old Zn–Pb–Cd-polluted waste heap area. Int J Mol Sci 22:2808. https://doi.org/10.3390/ijms22062808

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jones KM, Kobayashi H, Davies BW et al (2007) How rhizobial symbionts invade plants: the sinorhizobium—medicago model. Nat Rev Microbiol 5:619–633. https://doi.org/10.1038/nrmicro1705

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dickstein R, Bisseling T, Reinhold VN, Ausubel FM (1988) Expression of nodule-specific genes in alfalfa root nodules blocked at an early stage of development. Genes Dev 2:677–687. https://doi.org/10.1101/gad.2.6.677

Article  PubMed  CAS  Google Scholar 

Cheng HP, Walker GC (1998) 1998-succinoglycan is required for initiation and elongation of infection threads.pdf. J Bacteriol 180:5183–5191

Article  PubMed  PubMed Central  CAS  Google Scholar 

Janczarek M, Kutkowska J, Piersiak T, Skorupska A (2010) Rhizobium leguminosarum bv. trifolii rosR is required for interaction with clover, biofilm formation and adaptation to the environment. BMC Microbiol 10:284. https://doi.org/10.1186/1471-2180-10-284

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jones KM, Kobayashi H, Davies BW et al (2007) How rhizobial symbionts invade plants: the sinorhizobium-medicago model. Nat Rev Microbiol 5:619–633. https://doi.org/10.1038/nrmicro1705

Article  PubMed  PubMed Central  CAS  Google Scholar 

Janczarek M, Jaroszuk-Ściseł J, Skorupska A (2009) Multiple copies of rosR and pssA genes enhance exopolysaccharide production, symbiotic competitiveness and clover nodulation in Rhizobium leguminosarum bv. trifolii. Antonie Van Leeuwenhoek 96:471–486. https://doi.org/10.1007/s10482-009-9362-3

Article  PubMed  CAS  Google Scholar 

Kawaharada Y, Kelly S, Nielsen MW et al (2015) Receptor-mediated exopolysaccharide perception controls bacterial infection. Nature 523:308–312. https://doi.org/10.1038/nature14611

Article  PubMed  CAS  Google Scholar 

Kawaharada Y, Nielsen MW, Kelly S et al (2017) Differential regulation of the Epr3 receptor coordinates membrane-restricted rhizobial colonization of root nodule primordia. Nat Commun 8:14534. https://doi.org/10.1038/ncomms14534

Article  PubMed  PubMed Central  CAS  Google Scholar 

Maillet F, Fournier J, Mendis HC et al (2020) Sinorhizobium meliloti succinylated high-molecular-weight succinoglycan and the Medicago truncatula LysM receptor-like kinase MtLYK10 participate independently in symbiotic infection. Plant J 102:311–326. https://doi.org/10.1111/tpj.14625

Article  PubMed  PubMed Central  CAS  Google Scholar 

Dupin S, Klein J, Rutten L et al (2022) Pseudogenization of the rhizobium-responsive EXOPOLYSACCHARIDE RECEPTOR in Parasponia is a rare event in nodulating plants. BMC Plant Biol 22:225. https://doi.org/10.1186/s12870-022-03606-9

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wong JEMM, Gysel K, Birkefeldt TG et al (2020) Structural signatures in EPR3 define a unique class of plant carbohydrate receptors. Nat Commun 11:3797. https://doi.org/10.1038/s41467-020-17568-9

Article  PubMed 

留言 (0)

沒有登入
gif