The present and future of the Cancer Dependency Map

Schwartzberg, L., Kim, E. S., Liu, D. & Schrag, D. Precision oncology: who, how, what, when, and when not? Am. Soc. Clin. Oncol. Educ. Book 37, 160–169 (2017).

Article  PubMed  Google Scholar 

Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

Article  CAS  PubMed  Google Scholar 

Boehm, J. S. et al. Cancer research needs a better map. Nature 589, 514–516 (2021).

Article  CAS  PubMed  Google Scholar 

Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ghandi, M. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 569, 503–508 (2019). Together with Barretina et al. (2012), this paper presents the achievements of the CCLE project, whose data provided a critical foundation for the DepMap project.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Corsello, S. M. et al. Discovering the anti-cancer potential of non-oncology drugs by systematic viability profiling. Nat. Cancer 1, 235–248 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iorio, F. et al. A landscape of pharmacogenomic interactions in cancer. Cell 166, 740–754 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576.e16 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McDonald, E. R. et al. Project DRIVE: a compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening. Cell 170, 577–592.e10 (2017). Together with Iorio et al. (2016) and Tsherniak et al. (2017), this paper presents the framework for a cancer dependency map, generating genome-scale RNAi screens and drug-sensitivity profiles across panels of cell lines.

Article  CAS  PubMed  Google Scholar 

Aguirre, A. J. et al. Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov. 6, 914–929 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meyers, R. M. et al. Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779–1784 (2017). This study develops a computational method to correct copy number-associated toxicity of DNA cleavage, a major confounder in genetic viability screens using the CRISPR–Cas9 technology.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cancer Target Discovery and Development Network. Transforming big data into cancer-relevant insight: an initial, multi-tier approach to assess reproducibility and relevance. Mol. Cancer Res. 14, 675–682 (2016).

Article  Google Scholar 

Yu, C. et al. High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines. Nat. Biotechnol. 34, 419–423 (2016). This study describes the strategy of conducting compound screens in mixtures of different barcoded cancer cell lines, providing a technological foundation for the development of the PRISM assay for drug screening.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dempster, J. M. et al. Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects. Genome Biol. 22, 343 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Krill-Burger, J. M. et al. Partial gene suppression improves identification of cancer vulnerabilities when CRISPR–Cas9 knockout is pan-lethal. Genome Biol. 24, 192 (2023). This study describes the development of computational tools to evaluate cancer vulnerabilities identified in the DepMap cell fitness screens, including the methods for biomarker specification.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McFarland, J. M. et al. Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration. Nat. Commun. 9, 4610 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Shimada, K., Bachman, J. A., Muhlich, J. L. & Mitchison, T. J. shinyDepMap, a tool to identify targetable cancer genes and their functional connections from Cancer Dependency Map data. eLife 10, e57116 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pan, J. et al. Sparse dictionary learning recovers pleiotropy from human cell fitness screens. Cell Syst. 13, 286–303.e10 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Warren, A. et al. Global computational alignment of tumor and cell line transcriptional profiles. Nat. Commun. 12, 22 (2021). This study presents an unsupervised alignment method to map gene expression profiles of the CCLE cell line models to those of The Cancer Genome Atlas tumour samples, revealing the degree to which transcriptomes of human tumours are represented by the cell line models.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

Article  CAS  PubMed  Google Scholar 

Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA 109, E2579–E2586 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004).

Article  CAS  PubMed  Google Scholar 

Brummelkamp, T. R. et al. An shRNA barcode screen provides insight into cancer cell vulnerability to MDM2 inhibitors. Nat. Chem. Biol. 2, 202–206 (2006).

Article  CAS  PubMed  Google Scholar 

Kolfschoten, I. G. M. et al. A genetic screen identifies PITX1 as a suppressor of RAS activity and tumorigenicity. Cell 121, 849–858 (2005).

Article  CAS  PubMed  Google Scholar 

Luo, B. et al. Highly parallel identification of essential genes in cancer cells. Proc. Natl Acad. Sci. USA 105, 20380–20385 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006).

Article 

留言 (0)

沒有登入
gif