Vital Dye Uptake of YO-PRO-1 and DASPEI Depends Upon Mechanoelectrical Transduction Function in Zebrafish Hair Cells

Whitfield TT, Riley BB, Chiang M-Y, Phillips B (2002) Development of the zebrafish inner ear. Dev Dyn 223(4):427–458. https://doi.org/10.1002/dvdy.10073

Article  PubMed  Google Scholar 

Baxendale S, Whitfield TT (2016) Methods to study the development, anatomy, and function of the zebrafish inner ear across the life course. Methods Cell Biol 134:165–209. https://doi.org/10.1016/bs.mcb.2016.02.007

Article  CAS  PubMed  Google Scholar 

Nicolson T (2017) The genetics of hair-cell function in zebrafish. J Neurogenet 31(3):102–112. https://doi.org/10.1080/01677063.2017.1342246

Article  PubMed  PubMed Central  Google Scholar 

Basu A, Lagier S, Vologodskaia M, Fabella BA, Hudspeth AJ (2016) Direct mechanical stimulation of tip links in hair cells through DNA tethers. Elife 5 https://doi.org/10.7554/eLife.16041

Corey DP, Hudspeth AJ (1983) Kinetics of the receptor current in bullfrog saccular hair cells. J Neurosci 3(5):962–976. https://doi.org/10.1523/jneurosci.03-05-00962.1983

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flock A, Cheung HC (1977) Actin filaments in sensory hairs of inner ear receptor cells. J Cell Biol 75(2 Pt 1):339–343. https://doi.org/10.1083/jcb.75.2.339

Article  CAS  PubMed  Google Scholar 

Beurg M, Fettiplace R, Nam JH, Ricci AJ (2009) Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging. Nat Neurosci 12(5):553–558. https://doi.org/10.1038/nn.2295

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marcotti W (2012) Functional assembly of mammalian cochlear hair cells. Exp Physiol 97(4):438–451. https://doi.org/10.1113/expphysiol.2011.059303

Article  CAS  PubMed  Google Scholar 

Cunningham CL, Müller U (2019) Molecular structure of the hair cell mechanoelectrical transduction complex. Cold Spring Harb Perspect Med 9(5). https://doi.org/10.1101/cshperspect.a033167

Haddon C, Lewis J (1996) Early ear development in the embryo of the zebrafish. Danio rerio J Comp Neurol 365(1):113–128. https://doi.org/10.1002/(sici)1096-9861(19960129)365:1%3c113::Aid-cne9%3e3.0.Co;2-6

Article  CAS  PubMed  Google Scholar 

Metcalfe WK, Kimmel CB, Schabtach E (1985) Anatomy of the posterior lateral line system in young larvae of the zebrafish. J Comp Neurol 233(3):377–389. https://doi.org/10.1002/cne.902330307

Article  CAS  PubMed  Google Scholar 

Van Trump WJ, McHenry MJ (2008) The morphology and mechanical sensitivity of lateral line receptors in zebrafish larvae (Danio rerio). J Exp Biol 211(Pt 13):2105–2115. https://doi.org/10.1242/jeb.016204

Article  PubMed  Google Scholar 

Manuel R, Iglesias Gonzalez AB, Habicher J, Koning HK, Boije H (2021) Characterization of Individual Projections Reveal That Neuromasts of the Zebrafish Lateral Line are Innervated by Multiple Inhibitory Efferent Cells. Front Neuroanat 15:666109. https://doi.org/10.3389/fnana.2021.666109

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dijkgraaf S (1963) The functioning and significance of the lateral-line organs. Biol Rev Camb Philos Soc 38:51–105. https://doi.org/10.1111/j.1469-185x.1963.tb00654.x

Article  CAS  PubMed  Google Scholar 

Thomas ED, Cruz IA, Hailey DW, Raible DW (2015) There and back again: development and regeneration of the zebrafish lateral line system. Wiley Interdiscip Rev Dev Biol 4(1):1–16. https://doi.org/10.1002/wdev.160

Article  CAS  PubMed  Google Scholar 

Pickett SB, Raible DW (2019) Water Waves to Sound Waves: Using Zebrafish to Explore Hair Cell Biology. J Assoc Res Otolaryngol 20(1):1–19. https://doi.org/10.1007/s10162-018-00711-1

Article  PubMed  PubMed Central  Google Scholar 

Pisano GC, Mason SM, Dhliwayo N, Intine RV, Sarras MP, Jr. (2014) An assay for lateral line regeneration in adult zebrafish. J Vis Exp (86). https://doi.org/10.3791/51343.

Gale JE, Marcotti W, Kennedy HJ, Kros CJ, Richardson GP (2001) FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel. J Neurosci 21(18):7013–7025. https://doi.org/10.1523/jneurosci.21-18-07013.2001

Article  CAS  PubMed  PubMed Central  Google Scholar 

Venuto A, Smith C, Cameron-Pack M, Erickson T (2022) Alone in a crowd: effect of a nonfunctional lateral line on expression of the social hormone parathyroid hormone 2. Biol Open 11(10):bio059432. https://doi.org/10.1242/bio.059432

Santos F, MacDonald G, Rubel EW, Raible DW (2006) Lateral line hair cell maturation is a determinant of aminoglycoside susceptibility in zebrafish (Danio rerio). Hear Res 213(1):25–33. https://doi.org/10.1016/j.heares.2005.12.009

Article  CAS  PubMed  Google Scholar 

Amaral E, Guatimosim S, Guatimosim C (2011) Using the fluorescent styryl dye FM1-43 to visualize synaptic vesicles exocytosis and endocytosis in motor nerve terminals. Methods Mol Biol 689:137–148. https://doi.org/10.1007/978-1-60761-950-5_8

Article  CAS  PubMed  Google Scholar 

Brumback AC, Lieber JL, Angleson JK, Betz WJ (2004) Using FM1-43 to study neuropeptide granule dynamics and exocytosis. Methods 33(4):287–294. https://doi.org/10.1016/j.ymeth.2004.01.002

Article  CAS  PubMed  Google Scholar 

Nishikawa S, Sasaki F (1996) Internalization of styryl dye FM1-43 in the hair cells of lateral line organs in Xenopus larvae. J Histochem Cytochem 44(7):733–741. https://doi.org/10.1177/44.7.8675994

Article  CAS  PubMed  Google Scholar 

Vélez-Ortega AC, Freeman MJ, Indzhykulian AA, Grossheim JM, Frolenkov GI (2017) Mechanotransduction current is essential for stability of the transducing stereocilia in mammalian auditory hair cells. eLife 6:e24661. https://doi.org/10.7554/eLife.24661

Article  PubMed  PubMed Central  Google Scholar 

Majumder P, Moore PA, Richardson GP, Gale JE (2017) Protecting mammalian hair cells from aminoglycoside-toxicity: assessing phenoxybenzamine’s potential. Front Cell Neurosci 11. https://doi.org/10.3389/fncel.2017.00094

Brown AD, Mussen TD, Sisneros JA, Coffin AB (2011) Reevaluating the use of aminoglycoside antibiotics in behavioral studies of the lateral line. Hear Res 272(1–2):1–4. https://doi.org/10.1016/j.heares.2010.10.014

Article  CAS  PubMed  Google Scholar 

Hudson AM, Lockard GM, Namjoshi OA, Wilson JW, Kindt KS, Blough BE et al (2020) Berbamine Analogs Exhibit Differential Protective Effects From Aminoglycoside-Induced Hair Cell Death. Front Cell Neurosci 14:234. https://doi.org/10.3389/fncel.2020.00234

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kruger M, Boney R, Ordoobadi AJ, Sommers TF, Trapani JG, Coffin AB (2016) Natural Bizbenzoquinoline Derivatives Protect Zebrafish Lateral Line Sensory Hair Cells from Aminoglycoside Toxicity. Front Cell Neurosci 10:83. https://doi.org/10.3389/fncel.2016.00083

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fujisawa S, Romin Y, Barlas A, Petrovic LM, Turkekul M, Fan N et al (2014) Evaluation of YO-PRO-1 as an early marker of apoptosis following radiofrequency ablation of colon cancer liver metastases. Cytotechnology 66(2):259–273. https://doi.org/10.1007/s10616-013-9565-3

Article  CAS  PubMed  Google Scholar 

Jensen KH, Rekling JC (2010) Development of a no-wash assay for mitochondrial membrane potential using the styryl dye DASPEI. J Biomol Screen 15(9):1071–1081. https://doi.org/10.1177/1087057110376834

Article  CAS  PubMed  Google Scholar 

Bereiter-Hahn J (1976) Dimethylaminostyrylmethylpyridiniumiodine (DASPMI) as a fluorescent probe for mitochondria in situ. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 423(1):1–14. https://doi.org/10.1016/0005-2728(76)90096-7

Michel AD, Kaur R, Chessell IP, Humphrey PP (2000) Antagonist effects on human P2X(7) receptor-mediated cellular accumulation of YO-PRO-1. Br J Pharmacol. 130(3):513–20. https://doi.org/10.1038/sj.bjp.0703368.

Rassendren F, Buell GN, Virginio C, Collo G, North RA, Surprenant A (1997) The Permeabilizing ATP Receptor, P2X7: cloning and expression of a human cDNA. J Biol Chem 272(9):5482–5486. https://doi.org/10.1074/jbc.272.9.5482

留言 (0)

沒有登入
gif