Whitfield TT, Riley BB, Chiang M-Y, Phillips B (2002) Development of the zebrafish inner ear. Dev Dyn 223(4):427–458. https://doi.org/10.1002/dvdy.10073
Baxendale S, Whitfield TT (2016) Methods to study the development, anatomy, and function of the zebrafish inner ear across the life course. Methods Cell Biol 134:165–209. https://doi.org/10.1016/bs.mcb.2016.02.007
Article CAS PubMed Google Scholar
Nicolson T (2017) The genetics of hair-cell function in zebrafish. J Neurogenet 31(3):102–112. https://doi.org/10.1080/01677063.2017.1342246
Article PubMed PubMed Central Google Scholar
Basu A, Lagier S, Vologodskaia M, Fabella BA, Hudspeth AJ (2016) Direct mechanical stimulation of tip links in hair cells through DNA tethers. Elife 5 https://doi.org/10.7554/eLife.16041
Corey DP, Hudspeth AJ (1983) Kinetics of the receptor current in bullfrog saccular hair cells. J Neurosci 3(5):962–976. https://doi.org/10.1523/jneurosci.03-05-00962.1983
Article CAS PubMed PubMed Central Google Scholar
Flock A, Cheung HC (1977) Actin filaments in sensory hairs of inner ear receptor cells. J Cell Biol 75(2 Pt 1):339–343. https://doi.org/10.1083/jcb.75.2.339
Article CAS PubMed Google Scholar
Beurg M, Fettiplace R, Nam JH, Ricci AJ (2009) Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging. Nat Neurosci 12(5):553–558. https://doi.org/10.1038/nn.2295
Article CAS PubMed PubMed Central Google Scholar
Marcotti W (2012) Functional assembly of mammalian cochlear hair cells. Exp Physiol 97(4):438–451. https://doi.org/10.1113/expphysiol.2011.059303
Article CAS PubMed Google Scholar
Cunningham CL, Müller U (2019) Molecular structure of the hair cell mechanoelectrical transduction complex. Cold Spring Harb Perspect Med 9(5). https://doi.org/10.1101/cshperspect.a033167
Haddon C, Lewis J (1996) Early ear development in the embryo of the zebrafish. Danio rerio J Comp Neurol 365(1):113–128. https://doi.org/10.1002/(sici)1096-9861(19960129)365:1%3c113::Aid-cne9%3e3.0.Co;2-6
Article CAS PubMed Google Scholar
Metcalfe WK, Kimmel CB, Schabtach E (1985) Anatomy of the posterior lateral line system in young larvae of the zebrafish. J Comp Neurol 233(3):377–389. https://doi.org/10.1002/cne.902330307
Article CAS PubMed Google Scholar
Van Trump WJ, McHenry MJ (2008) The morphology and mechanical sensitivity of lateral line receptors in zebrafish larvae (Danio rerio). J Exp Biol 211(Pt 13):2105–2115. https://doi.org/10.1242/jeb.016204
Manuel R, Iglesias Gonzalez AB, Habicher J, Koning HK, Boije H (2021) Characterization of Individual Projections Reveal That Neuromasts of the Zebrafish Lateral Line are Innervated by Multiple Inhibitory Efferent Cells. Front Neuroanat 15:666109. https://doi.org/10.3389/fnana.2021.666109
Article CAS PubMed PubMed Central Google Scholar
Dijkgraaf S (1963) The functioning and significance of the lateral-line organs. Biol Rev Camb Philos Soc 38:51–105. https://doi.org/10.1111/j.1469-185x.1963.tb00654.x
Article CAS PubMed Google Scholar
Thomas ED, Cruz IA, Hailey DW, Raible DW (2015) There and back again: development and regeneration of the zebrafish lateral line system. Wiley Interdiscip Rev Dev Biol 4(1):1–16. https://doi.org/10.1002/wdev.160
Article CAS PubMed Google Scholar
Pickett SB, Raible DW (2019) Water Waves to Sound Waves: Using Zebrafish to Explore Hair Cell Biology. J Assoc Res Otolaryngol 20(1):1–19. https://doi.org/10.1007/s10162-018-00711-1
Article PubMed PubMed Central Google Scholar
Pisano GC, Mason SM, Dhliwayo N, Intine RV, Sarras MP, Jr. (2014) An assay for lateral line regeneration in adult zebrafish. J Vis Exp (86). https://doi.org/10.3791/51343.
Gale JE, Marcotti W, Kennedy HJ, Kros CJ, Richardson GP (2001) FM1-43 dye behaves as a permeant blocker of the hair-cell mechanotransducer channel. J Neurosci 21(18):7013–7025. https://doi.org/10.1523/jneurosci.21-18-07013.2001
Article CAS PubMed PubMed Central Google Scholar
Venuto A, Smith C, Cameron-Pack M, Erickson T (2022) Alone in a crowd: effect of a nonfunctional lateral line on expression of the social hormone parathyroid hormone 2. Biol Open 11(10):bio059432. https://doi.org/10.1242/bio.059432
Santos F, MacDonald G, Rubel EW, Raible DW (2006) Lateral line hair cell maturation is a determinant of aminoglycoside susceptibility in zebrafish (Danio rerio). Hear Res 213(1):25–33. https://doi.org/10.1016/j.heares.2005.12.009
Article CAS PubMed Google Scholar
Amaral E, Guatimosim S, Guatimosim C (2011) Using the fluorescent styryl dye FM1-43 to visualize synaptic vesicles exocytosis and endocytosis in motor nerve terminals. Methods Mol Biol 689:137–148. https://doi.org/10.1007/978-1-60761-950-5_8
Article CAS PubMed Google Scholar
Brumback AC, Lieber JL, Angleson JK, Betz WJ (2004) Using FM1-43 to study neuropeptide granule dynamics and exocytosis. Methods 33(4):287–294. https://doi.org/10.1016/j.ymeth.2004.01.002
Article CAS PubMed Google Scholar
Nishikawa S, Sasaki F (1996) Internalization of styryl dye FM1-43 in the hair cells of lateral line organs in Xenopus larvae. J Histochem Cytochem 44(7):733–741. https://doi.org/10.1177/44.7.8675994
Article CAS PubMed Google Scholar
Vélez-Ortega AC, Freeman MJ, Indzhykulian AA, Grossheim JM, Frolenkov GI (2017) Mechanotransduction current is essential for stability of the transducing stereocilia in mammalian auditory hair cells. eLife 6:e24661. https://doi.org/10.7554/eLife.24661
Article PubMed PubMed Central Google Scholar
Majumder P, Moore PA, Richardson GP, Gale JE (2017) Protecting mammalian hair cells from aminoglycoside-toxicity: assessing phenoxybenzamine’s potential. Front Cell Neurosci 11. https://doi.org/10.3389/fncel.2017.00094
Brown AD, Mussen TD, Sisneros JA, Coffin AB (2011) Reevaluating the use of aminoglycoside antibiotics in behavioral studies of the lateral line. Hear Res 272(1–2):1–4. https://doi.org/10.1016/j.heares.2010.10.014
Article CAS PubMed Google Scholar
Hudson AM, Lockard GM, Namjoshi OA, Wilson JW, Kindt KS, Blough BE et al (2020) Berbamine Analogs Exhibit Differential Protective Effects From Aminoglycoside-Induced Hair Cell Death. Front Cell Neurosci 14:234. https://doi.org/10.3389/fncel.2020.00234
Article CAS PubMed PubMed Central Google Scholar
Kruger M, Boney R, Ordoobadi AJ, Sommers TF, Trapani JG, Coffin AB (2016) Natural Bizbenzoquinoline Derivatives Protect Zebrafish Lateral Line Sensory Hair Cells from Aminoglycoside Toxicity. Front Cell Neurosci 10:83. https://doi.org/10.3389/fncel.2016.00083
Article CAS PubMed PubMed Central Google Scholar
Fujisawa S, Romin Y, Barlas A, Petrovic LM, Turkekul M, Fan N et al (2014) Evaluation of YO-PRO-1 as an early marker of apoptosis following radiofrequency ablation of colon cancer liver metastases. Cytotechnology 66(2):259–273. https://doi.org/10.1007/s10616-013-9565-3
Article CAS PubMed Google Scholar
Jensen KH, Rekling JC (2010) Development of a no-wash assay for mitochondrial membrane potential using the styryl dye DASPEI. J Biomol Screen 15(9):1071–1081. https://doi.org/10.1177/1087057110376834
Article CAS PubMed Google Scholar
Bereiter-Hahn J (1976) Dimethylaminostyrylmethylpyridiniumiodine (DASPMI) as a fluorescent probe for mitochondria in situ. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 423(1):1–14. https://doi.org/10.1016/0005-2728(76)90096-7
Michel AD, Kaur R, Chessell IP, Humphrey PP (2000) Antagonist effects on human P2X(7) receptor-mediated cellular accumulation of YO-PRO-1. Br J Pharmacol. 130(3):513–20. https://doi.org/10.1038/sj.bjp.0703368.
Rassendren F, Buell GN, Virginio C, Collo G, North RA, Surprenant A (1997) The Permeabilizing ATP Receptor, P2X7: cloning and expression of a human cDNA. J Biol Chem 272(9):5482–5486. https://doi.org/10.1074/jbc.272.9.5482
留言 (0)