Sosa Torres, M. E., Rito Morales, A., Solano Peralta, A. & Kroneck, P. M. H. in Transition Metals and Sulfur — A Strong Relationship for Life (eds Sosa Torres, M. E. & Kroneck, P. M. H.) 19–50 (De Gruyter, 2020).
Roerdink, D. Redrawing the early sulfur cycle. Nat. Geosci. 13, 526–527 (2020). This study suggests that the Archaean atmosphere may have been adequately oxygenated, as inferred from early-stage sulfur metabolic processes on Earth.
Ohmoto, H. A seawater-sulfate origin for early Earth’s volcanic sulfur. Nat. Geosci. 13, 576–583 (2020).
Lens, P. N. L. & Kuenen, J. G. The biological sulfur cycle: novel opportunities for environmental biotechnology. Water Sci. Technol. 44, 57–66 (2001).
Article CAS PubMed Google Scholar
Fioletov, V. E. et al. Version 2 of the global catalogue of large anthropogenic and volcanic SO2 sources and emissions derived from satellite measurements. Earth Syst. Sci. Data 15, 75–93 (2023).
Hinckley, E.-L. S., Crawford, J. T., Fakhraei, H. & Driscoll, C. T. A shift in sulfur-cycle manipulation from atmospheric emissions to agricultural additions. Nat. Geosci. 13, 597–604 (2020). This study describes the role of sulfur processes in agricultural contexts and their impacts and consequences on human and environmental health.
Nehb, W. & Vydra, K. in Ullmann’s Encyclopedia of Industrial Chemistry Vol. 35 Ch. 5 (Wiley, 2006).
Wu, B. et al. Microbial sulfur metabolism and environmental implications. Sci. Total. Environ. 778, 146085 (2021).
Article CAS PubMed Google Scholar
Madigan, M. T. et al. Brock Biology of Microorganisms (Pearson, 2018).
Moran, M. A. & Durham, B. P. Sulfur metabolites in the pelagic ocean. Nat. Rev. Microbiol. 17, 665–678 (2019). This review summarizes the release and uptake of organic sulfur metabolites by marine phytoplankton and other microorganisms.
Article CAS PubMed Google Scholar
Kieft, K. et al. Ecology of inorganic sulfur auxiliary metabolism in widespread bacteriophages. Nat. Commun. 12, 3503 (2021). This study reports the distribution, diversity and ecology of bacteriophage auxiliary metabolism associated with inorganic sulfur transformations.
Article CAS PubMed Central PubMed Google Scholar
Kieft, K. et al. Virus-associated organosulfur metabolism in human and environmental systems. Cell Rep. 36, 109471 (2021).
Article CAS PubMed Google Scholar
Schoonen, M. A. A. in Encyclopedia of Geochemistry (eds Marshall, C. & Fairbridge, R. W.) 608–610 (Springer, 1998).
Eriksen, J. in Advances in Agronomy Vol. 102 (ed. Sparks, D. L.) 55–89 (Academic, 2009).
Schoenau, J. J. & Malhi, S. S. in Sulfur: A Missing Link between Soils, Crops, and Nutrition (ed. Jez, J.) 1–10 (American Society of Agronomy, 2008).
Song, L., Wang, Y., Zhang, R. & Yang, S. Microbial mediation of carbon, nitrogen, and sulfur cycles during solid waste decomposition. Microb. Ecol. 86, 311–324 (2022).
Scherer, H. W. Sulfur in soils. J. Plant. Nutr. Soil. Sci. 172, 326–335 (2009).
Suzuki, I. Microbial leaching of metals from sulfide minerals. Biotechnol. Adv. 19, 119–132 (2001).
Article CAS PubMed Google Scholar
Watts, S. F. The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide. Atmos. Environ. 34, 761–779 (2000).
Bottrell, S. H. & Newton, R. J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes. Earth-Sci. Rev. 75, 59–83 (2006).
Malone Rubright, S. L., Pearce, L. L. & Peterson, J. Environmental toxicology of hydrogen sulfide. Nitric Oxide 71, 1–13 (2017).
Article CAS PubMed Central PubMed Google Scholar
Chan, Y. H. et al. A state-of-the-art review on capture and separation of hazardous hydrogen sulfide (H2S): recent advances, challenges and outlook. Environ. Pollut. 314, 120219 (2022).
Article CAS PubMed Google Scholar
Rubin, H. J. et al. Global nitrogen and sulfur deposition mapping using a measurement–model fusion approach. Atmos. Chem. Phys. 23, 7091–7102 (2023).
Edwards, P. J. Sulfur cycling, retention, and mobility in soils: a review (US Department of Agriculture, 1998).
Picard, A., Gartman, A. & Girguis, P. R. What do we really know about the role of microorganisms in iron sulfide mineral formation? Front. Earth Sci. 4, 68 (2016).
Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016).
Article CAS PubMed Central PubMed Google Scholar
Hug, L. A. & Co, R. It takes a village: microbial communities thrive through interactions and metabolic handoffs. mSystems 3, e00152-17 (2018).
Article PubMed Central PubMed Google Scholar
Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 46, D633–D639 (2018).
Article CAS PubMed Google Scholar
Sousa, F. M., Pereira, J. G., Marreiros, B. C. & Pereira, M. M. Taxonomic distribution, structure/function relationship and metabolic context of the two families of sulfide dehydrogenases: SQR and FCSD. Biochim. Biophys. Acta 1859, 742–753 (2018).
Rohwerder, T. & Sand, W. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology 149, 1699–1710 (2003).
Anantharaman, K. et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J. 12, 1715–1728 (2018). This study reveals a substantial degree of previously unknown microbial diversity associated with dissimilatory sulfur cycling.
Article CAS PubMed Central Google Scholar
Müller, A. L., Kjeldsen, K. U., Rattei, T., Pester, M. & Loy, A. Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases. ISME J. 9, 1152–1165 (2015).
Löffler, M. et al. DsrL mediates electron transfer between NADH and rDsrAB in Allochromatium vinosum. Environ. Microbiol. 22, 783–795 (2020).
Löffler, M., Wallerang, K. B., Venceslau, S. S., Pereira, I. A. C. & Dahl, C. The iron-sulfur flavoprotein DsrL as NAD(P)H: acceptor oxidoreductase in oxidative and reductive dissimilatory sulfur metabolism. Front. Microbiol. 11, 578209 (2020).
Article PubMed Central Google Scholar
Koch, T. & Dahl, C. A novel bacterial sulfur oxidation pathway provides a new link between the cycles of organic and inorganic sulfur compounds. ISME J. 12, 2479–2491 (2018). This study describes the recent discovery of a new sulfur oxidation pathway involving the volatile organic sulfur compound DMS, which links the cycling of organic and inorganic sulfur compounds.
Article CAS PubMed Central Google Scholar
Ernst, C. et al. Structural and spectroscopic characterization of a HdrA-like subunit from Hyphomicrobium denitrificans. FEBS J. 288, 1664–1678 (2021).
Tanabe, T. S. et al. Identification of a novel lipoic acid biosynthesis pathway reveals the complex evolution of lipoate assembly in prokaryotes. PLoS Biol. 21, e3002177 (2023).
Article CAS PubMed Central Google Scholar
Cao, X. et al. Lipoate-binding proteins and specific lipoate-protein ligases in microbial sulfur oxidation reveal an atpyical role for an old cofactor. eLife 7, e37439 (2018).
Article PubMed Central Google Scholar
Friedrich, C. G., Bardischewsky, F., Rother, D., Quentmeier, A. & Fischer, J. Prokaryotic sulfur oxidation. Curr. Opin. Microbiol. 8, 253–259 (2005).
Hensen, D., Sperling, D., Trüper, H. G., Brune, D. C. & Dahl, C. Thiosulphate oxidation in the phototrophic sulphur bacterium Allochromatium vinosum. Mol. Microbiol. 62, 794–810 (2006).
Welte, C. et al. Interaction between Sox proteins of two physiologically distinct bacteria and a new protein involved in thiosulfate oxidation. FEBS Lett. 583, 1281–1286 (2009).
留言 (0)