Diversity and ecology of microbial sulfur metabolism

Sosa Torres, M. E., Rito Morales, A., Solano Peralta, A. & Kroneck, P. M. H. in Transition Metals and Sulfur — A Strong Relationship for Life (eds Sosa Torres, M. E. & Kroneck, P. M. H.) 19–50 (De Gruyter, 2020).

Roerdink, D. Redrawing the early sulfur cycle. Nat. Geosci. 13, 526–527 (2020). This study suggests that the Archaean atmosphere may have been adequately oxygenated, as inferred from early-stage sulfur metabolic processes on Earth.

Article  CAS  Google Scholar 

Ohmoto, H. A seawater-sulfate origin for early Earth’s volcanic sulfur. Nat. Geosci. 13, 576–583 (2020).

Article  CAS  Google Scholar 

Lens, P. N. L. & Kuenen, J. G. The biological sulfur cycle: novel opportunities for environmental biotechnology. Water Sci. Technol. 44, 57–66 (2001).

Article  CAS  PubMed  Google Scholar 

Fioletov, V. E. et al. Version 2 of the global catalogue of large anthropogenic and volcanic SO2 sources and emissions derived from satellite measurements. Earth Syst. Sci. Data 15, 75–93 (2023).

Article  Google Scholar 

Hinckley, E.-L. S., Crawford, J. T., Fakhraei, H. & Driscoll, C. T. A shift in sulfur-cycle manipulation from atmospheric emissions to agricultural additions. Nat. Geosci. 13, 597–604 (2020). This study describes the role of sulfur processes in agricultural contexts and their impacts and consequences on human and environmental health.

Article  CAS  Google Scholar 

Nehb, W. & Vydra, K. in Ullmann’s Encyclopedia of Industrial Chemistry Vol. 35 Ch. 5 (Wiley, 2006).

Wu, B. et al. Microbial sulfur metabolism and environmental implications. Sci. Total. Environ. 778, 146085 (2021).

Article  CAS  PubMed  Google Scholar 

Madigan, M. T. et al. Brock Biology of Microorganisms (Pearson, 2018).

Moran, M. A. & Durham, B. P. Sulfur metabolites in the pelagic ocean. Nat. Rev. Microbiol. 17, 665–678 (2019). This review summarizes the release and uptake of organic sulfur metabolites by marine phytoplankton and other microorganisms.

Article  CAS  PubMed  Google Scholar 

Kieft, K. et al. Ecology of inorganic sulfur auxiliary metabolism in widespread bacteriophages. Nat. Commun. 12, 3503 (2021). This study reports the distribution, diversity and ecology of bacteriophage auxiliary metabolism associated with inorganic sulfur transformations.

Article  CAS  PubMed Central  PubMed  Google Scholar 

Kieft, K. et al. Virus-associated organosulfur metabolism in human and environmental systems. Cell Rep. 36, 109471 (2021).

Article  CAS  PubMed  Google Scholar 

Schoonen, M. A. A. in Encyclopedia of Geochemistry (eds Marshall, C. & Fairbridge, R. W.) 608–610 (Springer, 1998).

Eriksen, J. in Advances in Agronomy Vol. 102 (ed. Sparks, D. L.) 55–89 (Academic, 2009).

Schoenau, J. J. & Malhi, S. S. in Sulfur: A Missing Link between Soils, Crops, and Nutrition (ed. Jez, J.) 1–10 (American Society of Agronomy, 2008).

Song, L., Wang, Y., Zhang, R. & Yang, S. Microbial mediation of carbon, nitrogen, and sulfur cycles during solid waste decomposition. Microb. Ecol. 86, 311–324 (2022).

Article  PubMed  Google Scholar 

Scherer, H. W. Sulfur in soils. J. Plant. Nutr. Soil. Sci. 172, 326–335 (2009).

Article  CAS  Google Scholar 

Suzuki, I. Microbial leaching of metals from sulfide minerals. Biotechnol. Adv. 19, 119–132 (2001).

Article  CAS  PubMed  Google Scholar 

Watts, S. F. The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon disulfide and hydrogen sulfide. Atmos. Environ. 34, 761–779 (2000).

Article  CAS  Google Scholar 

Bottrell, S. H. & Newton, R. J. Reconstruction of changes in global sulfur cycling from marine sulfate isotopes. Earth-Sci. Rev. 75, 59–83 (2006).

Article  CAS  Google Scholar 

Malone Rubright, S. L., Pearce, L. L. & Peterson, J. Environmental toxicology of hydrogen sulfide. Nitric Oxide 71, 1–13 (2017).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Chan, Y. H. et al. A state-of-the-art review on capture and separation of hazardous hydrogen sulfide (H2S): recent advances, challenges and outlook. Environ. Pollut. 314, 120219 (2022).

Article  CAS  PubMed  Google Scholar 

Rubin, H. J. et al. Global nitrogen and sulfur deposition mapping using a measurement–model fusion approach. Atmos. Chem. Phys. 23, 7091–7102 (2023).

Article  CAS  Google Scholar 

Edwards, P. J. Sulfur cycling, retention, and mobility in soils: a review (US Department of Agriculture, 1998).

Picard, A., Gartman, A. & Girguis, P. R. What do we really know about the role of microorganisms in iron sulfide mineral formation? Front. Earth Sci. 4, 68 (2016).

Article  Google Scholar 

Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016).

Article  CAS  PubMed Central  PubMed  Google Scholar 

Hug, L. A. & Co, R. It takes a village: microbial communities thrive through interactions and metabolic handoffs. mSystems 3, e00152-17 (2018).

Article  PubMed Central  PubMed  Google Scholar 

Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 46, D633–D639 (2018).

Article  CAS  PubMed  Google Scholar 

Sousa, F. M., Pereira, J. G., Marreiros, B. C. & Pereira, M. M. Taxonomic distribution, structure/function relationship and metabolic context of the two families of sulfide dehydrogenases: SQR and FCSD. Biochim. Biophys. Acta 1859, 742–753 (2018).

Article  CAS  Google Scholar 

Rohwerder, T. & Sand, W. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology 149, 1699–1710 (2003).

Article  CAS  Google Scholar 

Anantharaman, K. et al. Expanded diversity of microbial groups that shape the dissimilatory sulfur cycle. ISME J. 12, 1715–1728 (2018). This study reveals a substantial degree of previously unknown microbial diversity associated with dissimilatory sulfur cycling.

Article  CAS  PubMed Central  Google Scholar 

Müller, A. L., Kjeldsen, K. U., Rattei, T., Pester, M. & Loy, A. Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases. ISME J. 9, 1152–1165 (2015).

Article  Google Scholar 

Löffler, M. et al. DsrL mediates electron transfer between NADH and rDsrAB in Allochromatium vinosum. Environ. Microbiol. 22, 783–795 (2020).

Article  Google Scholar 

Löffler, M., Wallerang, K. B., Venceslau, S. S., Pereira, I. A. C. & Dahl, C. The iron-sulfur flavoprotein DsrL as NAD(P)H: acceptor oxidoreductase in oxidative and reductive dissimilatory sulfur metabolism. Front. Microbiol. 11, 578209 (2020).

Article  PubMed Central  Google Scholar 

Koch, T. & Dahl, C. A novel bacterial sulfur oxidation pathway provides a new link between the cycles of organic and inorganic sulfur compounds. ISME J. 12, 2479–2491 (2018). This study describes the recent discovery of a new sulfur oxidation pathway involving the volatile organic sulfur compound DMS, which links the cycling of organic and inorganic sulfur compounds.

Article  CAS  PubMed Central  Google Scholar 

Ernst, C. et al. Structural and spectroscopic characterization of a HdrA-like subunit from Hyphomicrobium denitrificans. FEBS J. 288, 1664–1678 (2021).

Article  CAS  Google Scholar 

Tanabe, T. S. et al. Identification of a novel lipoic acid biosynthesis pathway reveals the complex evolution of lipoate assembly in prokaryotes. PLoS Biol. 21, e3002177 (2023).

Article  CAS  PubMed Central  Google Scholar 

Cao, X. et al. Lipoate-binding proteins and specific lipoate-protein ligases in microbial sulfur oxidation reveal an atpyical role for an old cofactor. eLife 7, e37439 (2018).

Article  PubMed Central  Google Scholar 

Friedrich, C. G., Bardischewsky, F., Rother, D., Quentmeier, A. & Fischer, J. Prokaryotic sulfur oxidation. Curr. Opin. Microbiol. 8, 253–259 (2005).

Article  CAS  Google Scholar 

Hensen, D., Sperling, D., Trüper, H. G., Brune, D. C. & Dahl, C. Thiosulphate oxidation in the phototrophic sulphur bacterium Allochromatium vinosum. Mol. Microbiol. 62, 794–810 (2006).

Article  CAS  Google Scholar 

Welte, C. et al. Interaction between Sox proteins of two physiologically distinct bacteria and a new protein involved in thiosulfate oxidation. FEBS Lett. 583, 1281–1286 (2009).

Article  CAS 

留言 (0)

沒有登入
gif