Lactobacillus gasseri BNR17 and Limosilactobacillus fermentum ABF21069 Ameliorate High Sucrose-Induced Obesity and Fatty Liver via Exopolysaccharide Production and β-oxidation

Ayogu, R. N., Oshomegie, H., & Udenta, E. A. (2022). Energy intake, expenditure and balance, and factors associated with energy balance of young adults (20–39 years): A retrospective cross-sectional community-based cohort study. BMC Nutrition, 8, 142.

Article  PubMed Central  Google Scholar 

Brunt, E. M. (2012). Nonalcoholic fatty liver disease: What the pathologist can tell the clinician. Digestive Diseases, 30, 61–68.

Article  Google Scholar 

Chung, H. J., Yu, J. G., Lee, I. A., Liu, M. J., Shen, Y. F., Sharma, S. P., Jamal, M. A., Yoo, J. H., Kim, H. J., & Hong, S. T. (2016). Intestinal removal of free fatty acids from hosts by Lactobacilli for the treatment of obesity. FEBS Open Bio, 6, 64–76.

Article  CAS  PubMed Central  Google Scholar 

Fazel, Y., Koenig, A. B., Sayiner, M., Goodman, Z. D., & Younossi, Z. M. (2016). Epidemiology and natural history of non-alcoholic fatty liver disease. Metabolism, 65, 1017–1025.

Article  CAS  Google Scholar 

Fekete, K., Györei, E., Lohner, S., Verduci, E., Agostoni, C., & Decsi, T. (2015). Long-chain polyunsaturated fatty acid status in obesity: A systematic review and meta‐analysis. Obesity Reviews, 16, 488–497.

Article  CAS  Google Scholar 

Ghadge, A. A., & Khaire, A. A. (2019). Leptin as a predictive marker for metabolic syndrome. Cytokine, 121, 154735.

Article  CAS  Google Scholar 

Girona, J., Amigó, N., Ibarretxe, D., Plana, N., Rodríguez-Borjabad, C., Heras, M., Ferré, R., Gil, M., Correig, X., & Masana, L. (2019). HDL triglycerides: A new marker of metabolic and cardiovascular risk. International Journal of Molecular Sciences, 20, 3151.

Article  CAS  PubMed Central  Google Scholar 

Hariri, N., & Thibault, L. (2010). High-fat diet-induced obesity in animal models. Nutrition Research Reviews, 23, 270–299.

Article  CAS  Google Scholar 

Hecker, J., Freijer, K., Hiligsmann, M., & Evers, S. (2022). Burden of disease study of overweight and obesity; the societal impact in terms of cost-of-illness and health-related quality of life. Bmc Public Health, 22, 46.

Article  CAS  PubMed Central  Google Scholar 

Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., & Salminen, S. (2014). Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11, 506–514.

Article  Google Scholar 

Huang, L., & Li, C. (2000). Leptin: A multifunctional hormone. Cell Research, 10, 81–92.

Article  CAS  Google Scholar 

Huang, J., Borensztajn, J., & Reddy, J. K. (2011). Hepatic lipid metabolism. In S. Monga (Ed.), Molecular Pathology of Liver Diseases Molecular Pathology Library (Vol. 5, pp. 133–146). Springer.

Chapter  Google Scholar 

Jeong, H., Hwang, U. S., Choi, H., Park, Y. S., CAB701. (2023). Assessing the anti-obesity potential of Lactococcus lactis subsp. lactis CAB701: Modulation of adipocyte differentiation and lipid metabolism in in vitro and in vivo models. Probiotics and Antimicrobial Proteins. https://doi.org/10.1007/s12602-023-10198-9

Article  Google Scholar 

Jurášková, D., Ribeiro, S. C., & Silva, C. C. (2022). Exopolysaccharides produced by lactic acid bacteria: From biosynthesis to health-promoting properties. Foods, 11, 156.

Article  PubMed Central  Google Scholar 

Kang, J. H., Yun, S. I., Park, M. H., Park, J. H., Jeong, S. Y., & Park, H. O. (2013). Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. Plos One, 8, e54617.

Article  CAS  PubMed Central  Google Scholar 

Karimi, G., Jamaluddin, R., Mohtarrudin, N., Ahmad, Z., Khazaai, H., & Parvaneh, M. (2017). Single-species versus dual-species probiotic supplementation as an emerging therapeutic strategy for obesity. Nutrition Metabolism and Cardiovascular Diseases, 27, 910–918.

Article  CAS  Google Scholar 

Kim, J., Yun, J. M., Kim, M. K., Kwon, O., & Cho, B. (2018). Lactobacillus gasseri BNR17 supplementation reduces the visceral fat accumulation and waist circumference in obese adAlts: a randomized, double-blind, placebo-controlled trial. Journal of Medicinal Food, 21, 454–461.

Article  CAS  Google Scholar 

Kim, G., Bae, J. H., Cheon, S., Lee, D. H., Kim, D. H., Lee, D., Park, S. H., Shim, S., Seo, J. H., & Han, N. S. (2022). Prebiotic activities of dextran from Leuconostoc mesenteroides SPCL742 analyzed in the aspect of the human gut microbial ecosystem. Food and Function, 13, 1256–1267.

Article  CAS  Google Scholar 

Kim, W. K., Min, S. G., Kwon, H., Park, S., Jo, M. J., & Ko, G. (2023). Lactobacillus rhamnosus KBL2290 ameliorates gut inflammation in a mouse model of dextran sulfate sodium-induced colitis. Journal of Microbiology, 61, 673–682.

Article  CAS  Google Scholar 

Lee, J., Park, S., Oh, N., Park, J., Kwon, M., Seo, J., & Roh, S. (2021). Oral intake of Lactobacillus plantarum L-14 extract alleviates TLR2‐and AMPK‐mediated obesity‐associated disorders in high‐fat‐diet‐induced obese C57BL/6J mice. Cell Proliferation, 54, e13039.

Article  CAS  PubMed Central  Google Scholar 

Lehnert, T., Sonntag, D., Konnopka, A., Riedel-Heller, S., & König, H. H. (2012). The long‐term cost‐effectiveness of obesity prevention interventions: Systematic literature review. Obesity Reviews, 13, 537–553.

Article  CAS  Google Scholar 

Lian, C. Y., Zhai, Z. Z., Li, Z. F., & Wang, L. (2020). High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms. Chemico-Biological Interactions, 330, 109199.

Article  CAS  Google Scholar 

Mantovani, A., Scorletti, E., Mosca, A., Alisi, A., Byrne, C. D., & Targher, G. (2020). Complications, morbidity and mortality of nonalcoholic fatty liver disease. Metabolism, 111, 154170.

Article  CAS  Google Scholar 

Marihart, C. L., Brunt, A. R., & Geraci, A. A. (2014). Older adults fighting obesity with bariatric surgery: Benefits, side effects, and outcomes. SAGE Open Medicine, 2, 2050312114530917.

Article  PubMed Central  Google Scholar 

Müller, T. D., Blüher, M., Tschöp, M. H., & DiMarchi, R. D. (2022). Anti-obesity drug discovery: Advances and challenges. Nature Reviews Drug Discovery, 21, 201–223.

Article  Google Scholar 

Oerlemans, M. M., Akkerman, R., Ferrari, M., Walvoort, M. T., & de Vos, P. (2021). Benefits of bacteria-derived exopolysaccharides on gastrointestinal microbiota, immunity and health. Journal of Functional Foods, 76, 104289.

Article  CAS  Google Scholar 

Park, J. H., Ahn, E. K., Hwang, M. H., Park, Y. J., Cho, Y. R., Ko, H. J., Jeong, W., Yang, S. H., Seo, D. W., & Oh, J. S. (2021). Improvement of obesity and dyslipidemic activity of Amomum tsao-ko in C57BL/6 mice fed a high-carbohydrate diet. Molecules, 26, 1638.

Article  CAS  PubMed Central  Google Scholar 

Pérez-Corredor, P., Gutiérrez-Vargas, J., Ciro-Ramírez, L., Balcazar, N., & Cardona-Gómez, G. (2022). High fructose diet-induced obesity worsens post-ischemic brain injury in the hippocampus of female rats. Nutritional Neuroscience, 25, 122–136.

Article  Google Scholar 

Sarwar, R., Pierce, N., & Koppe, S. (2018). Obesity and nonalcoholic fatty liver disease: Current perspectives. Diabetes Metabolic Syndrome and Obesity: Targets and Therapy, 11, 533–542.

Article  CAS  Google Scholar 

Shen, Y. L., Zhang, L. Q., Yang, Y., Yin, B. C., Ye, B. C., & Zhou, Y. (2022). Advances in the role and mechanism of lactic acid bacteria in treating obesity. Food Bioengineering, 1, 101–115.

Article  Google Scholar 

Sinclair, P., Docherty, N., & le Roux, C. W. (2018). Metabolic effects of bariatric surgery. Clinical Chemistry, 64, 72–81.

Article  CAS  Google Scholar 

Soleimani, M., Barone, S., Luo, H., & Zahedi, K. (2023). Pathogenesis of hypertension in metabolic syndrome: The role of fructose and salt. International Journal of Molecular Sciences, 24, 4294.

Article  CAS  PubMed Central  Google Scholar 

Stienstra, R., Duval, C., Müller, M., & Kersten, S. (2007). PPARs, obesity, and inflammation. PPAR Research, 2007, 95974.

Article  Google Scholar 

Szulińska, M., Łoniewski, I., van Hemert, S., Sobieska, M., & Bogdański, P. (2018). Dose-dependent effects of multispecies probiotic supplementation on the lipopolysaccharide (LPS) level and cardiometabolic profile in obese postmenopausal women: A 12-week randomized clinical trial. Nutrients, 10, 773.

Article  PubMed Central  Google Scholar 

Tappy, L., & Lê, K. A. (2010). Metabolic effects of fructose and the worldwide increase in obesity. Physiological Reviews, 90, 23–46.

Article  CAS  Google Scholar 

Todoric, J., Di Caro, G., Reibe, S., Henstridge, D. C., Green, C. R., Vrbanac, A., Ceteci, F., Conche, C., McNulty, R., Shalapour, S., et al. (2020). Fructose stimulated de novo lipogenesis is promoted by inflammation. Nature Metabolism, 2, 1034–1045.

Article  CAS 

留言 (0)

沒有登入
gif