Mitchell AM, Palettas M, Christian LM. Fetal sex is associated with maternal stimulated cytokine production, but not serum cytokine levels, in human pregnancy. Brain Behav Immun. 2017;60:32–7.
O’Callaghan JL, Clifton VL, Prentis P, Ewing A, Saif Z, Pelzer ES. Sex-dependent differential transcript expression in the placenta of growth restricted infants. Placenta. 2022;128:1–8.
Eriksson JG, Kajantie E, Osmond C, Thornburg K, Barker DJP. Boys live dangerously in the womb. Am J Hum Biology. 2010;22:330–5.
Sun T, Gonzalez TL, Deng N, DiPentino R, Clark EL, Lee B et al. Sexually Dimorphic Crosstalk at the Maternal-Fetal Interface. J Clin Endocrinol Metab [Internet]. 2020;105:e4831-47. http://www.ncbi.nlm.nih.gov/pubmed/32772088
Braun AE, Mitchel OR, Gonzalez TL, Sun T, Flowers AE, Pisarska MD, et al. Sex at the interface: the origin and impact of sex differences in the developing human placenta. Biol Sex Differ. BioMed Central Ltd; 2022.
Melamed N, Yogev Y, Glezerman M. Fetal gender and pregnancy outcome. J Matern Fetal Neonatal Med. 2010;23:338–44.
Verburg PE, Tucker G, Scheil W, Erwich JJHM, Dekker GA, Roberts CT. Sexual dimorphism in adverse pregnancy outcomes - A retrospective Australian population study 1981–2011. PLoS ONE. 2016;11.
Gonzalez TL, Sun T, Koeppel AF, Lee B, Wang ET, Farber CR et al. Sex differences in the late first trimester human placenta transcriptome. Biol Sex Differ. 2018;9.
Elsmén E, Källén K, Maršál K, Hellström-Westas L. Fetal gender and gestational-age-related incidence of pre-eclampsia. Acta Obstet Gynecol Scand. 2006;85:1285–91.
Zazara DE, Arck PC. Developmental origin and sex-specific risk for infections and immune diseases later in life. Semin Immunopathol. Springer Verlag; 2019. pp. 137–51.
Beilby KH, Kneebone E, Roseboom TJ, van Marrewijk IM, Thompson JG, Norman RJ, et al. Offspring physiology following the use of IVM, IVF and ICSI: a systematic review and meta-analysis of animal studies. Hum Reprod Update. 2023;29:272–90.
Article PubMed Central CAS Google Scholar
Gabory A, Roseboom TJ, Moore T, Moore LG, Junien C. Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol Sex Differ. 2013.
Maxwell A, Adzibolosu N, Hu A, You Y, Stemmer PM, Ruden DM et al. Intrinsic sexual dimorphism in the placenta determines the differential response to benzene exposure. iScience. 2023;26.
Falahi S, Abdoli A, Kenarkoohi A. Maternal COVID-19 infection and the fetus: immunological and neurological perspectives. New Microbes New Infect. 2023;53:101135.
Article PubMed Central CAS Google Scholar
Olin A, Henckel E, Chen Y, Lakshmikanth T, Pou C, Mikes J, et al. Stereotypic Immune System Development in Newborn Children. Cell. 2018;174:1277–e129214.
Article PubMed Central CAS Google Scholar
Forsen T, Eriksson JG, Tuomilehto J, Osmond C, Barker DJP. Growth in utero and during childhood among women who develop coronary heart disease: longitudinal study. BMJ. 1999;319:1403–7.
Article PubMed Central CAS Google Scholar
Taylor BD, Ness RB, Klebanoff MA, Tang G, Roberts JM, Hougaard DM, et al. The impact of female fetal sex on preeclampsia and the maternal immune milieu. Pregnancy Hypertens. 2018;12:53–7.
Article PubMed Central Google Scholar
Miremberg H, Ganer Herman H, Bustan M, Weiner E, Schreiber L, Bar J, et al. Placental vascular lesions differ between male and female fetuses in early-onset preeclampsia. Arch Gynecol Obstet. 2022;306:717–22.
Reyes L, Golos TG. Hofbauer cells: their role in healthy and complicated pregnancy. Front Immunol. Frontiers Media S.A.; 2018.
Seval Y, Korgun ET, Demir R. Hofbauer Cells in early human placenta: possible implications in Vasculogenesis and angiogenesis. Placenta. 2007;28:841–5.
Ingman K, Cookson VJKW, Jones CJP, Aplin JD. Characterisation of Hofbauer Cells in First and Second Trimester Placenta: incidence, phenotype, survival in vitro and motility. Placenta. 2010;31:535–44.
Thomas JR, Naidu P, Appios A, McGovern N. The Ontogeny and function of placental macrophages. Front Immunol. Frontiers Media S.A.; 2021.
Zulu MZ, Martinez FO, Gordon S, Gray CM. The elusive role of placental macrophages: the Hofbauer cell. J Innate Immun. S. Karger AG; 2019.
Thomas JR, Appios A, Zhao X, Dutkiewicz R, Donde M, Lee CYC et al. Phenotypic and functional characterization of first-trimester human placental macrophages, Hofbauer cells. J Exp Med. 2020;218.
Megli CJ, Coyne CB. Infections at the maternal–fetal interface: an overview of pathogenesis and defence. Nat Rev Microbiol Nat Res; 2022. pp. 67–82.
Tauber Z, Chroma K, Baranova R, Cizkova K. The expression patterns of IL-1β and IL-10 and their relation to CYP epoxygenases in normal human placenta. Annals Anat. 2021;236.
Schliefsteiner C, Ibesich S, Wadsack C. Placental hofbauer cell polarization resists inflammatory cues in vitro. Int J Mol Sci. 2020;21.
Pantazi P, Kaforou M, Tang Z, Abrahams VM, McArdle A, Guller S et al. Placental macrophage responses to viral and bacterial ligands and the influence of fetal sex. iScience. 2022;25.
O’Neill LAJ, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol Nat Publishing Group; 2016. pp. 553–65.
Tabas I, Bornfeldt KE. Intracellular and intercellular aspects of macrophage immunometabolism in atherosclerosis. Circ Res. 2020;126:1209–27.
Article PubMed Central CAS Google Scholar
Wculek SK, Heras-Murillo I, Mastrangelo A, Mañanes D, Galán M, Miguel V, et al. Oxidative phosphorylation selectively orchestrates tissue macrophage homeostasis. Immunity. 2023;56:516–e5309.
Wculek SK, Dunphy G, Heras-Murillo I, Mastrangelo A, Sancho D. Metabolism of tissue macrophages in homeostasis and pathology. Cell Mol Immunol. Springer Nature; 2022. pp. 384–408.
Sheng YR, Hu WT, Shen HH, Wei CY, Liu YK, Ma XQ et al. An imbalance of the IL-33/ST2-AXL-efferocytosis axis induces pregnancy loss through metabolic reprogramming of decidual macrophages. Cell Mol Life Sci. 2022;79.
Merech F, Gori S, Calo G, Hauk V, Paparini D, Rios D, et al. Monocyte immunometabolic reprogramming in human pregnancy: contribution of trophoblast cells. Am J Physiol Endocrinol Metab. 2024;326:E215–25.
Gao L, Xu QH, Ma LN, Luo J, Muyayalo KP, Wang LL, et al. Trophoblast-derived lactic acid orchestrates decidual macrophage differentiation via SRC/LDHA Signaling in early pregnancy. Int J Biol Sci. 2022;18:599–616.
Article PubMed Central CAS Google Scholar
Paparini DE, Choudhury RH, Vota DM, Karolczak-Bayatti M, Finn-Sell S, Grasso EN et al. Vasoactive intestinal peptide shapes first-trimester placenta trophoblast, vascular, and immune cell cooperation. Br J Pharmacol [Internet]. 2019;176:964–80. http://www.ncbi.nlm.nih.gov/pubmed/30726565
Paparini DE, Grasso E, Fernandez LDC, Merech F, Weingrill-Barbano R, Correa-Silva S, et al. Decidual factors and vasoactive intestinal peptide guide monocytes to higher migration, efferocytosis and wound healing in term human pregnancy. Acta Physiol (Oxf). 2021;232:e13579.
Wetzka B, Clark DE, Charnock-Jones DS, Zahradnik HP, Smith SK, Kaufmann. Isolation of macrophages (Hofbauer cells) from human term placenta and their prostaglandin E 2 and thromboxane production (MHC) class I and II antigens (Castellucci. Human Reproduction vol. 1997.
Appios A, Thomas JR, McGovern N. Isolation of first-trimester and full-term human placental Hofbauer cells. Bio Protoc. 2021;11.
Paparini D, Gori S, Grasso E, Scordo W, Calo G, Pérez Leirós C et al. Acetylcholine contributes to control the physiological inflammatory response during the peri-implantation period. Acta Physiol. 2015;214.
Kolahi K, Louey S, Varlamov O, Thornburg K. Real-time tracking of BODIPY-C12 long-chain fatty acid in Human Term Placenta Reveals Unique Lipid Dynamics in Cytotrophoblast Cells. PLoS ONE. 2016;11:e0153522.
Article PubMed Central Google Scholar
Paparini D, Grasso E, Calo G, Vota D, Hauk V, Ramhorst R et al. Trophoblast cells primed with vasoactive intestinal peptide enhance monocyte migration and apoptotic cell clearance through αvβ3 integrin portal formation in a model of maternal–placental interaction. Mol Hum Reprod [Internet]. 2015;21:930–41. http://www.molehr.oxfordjournals.org/lookup/doi/https://doi.org/10.1093/molehr/gav059
Calo G, Sabbione F, Vota D, Paparini D, Ramhorst R, Trevani A et al. Trophoblast cells inhibit neutrophil extracellular trap formation and enhance apoptosis through vasoactive intestinal peptide-mediated pathways. Hum Reprod. 2017;32.
Calo G, Sabbione F, Pascuali N, Keitelman I, Vota D, Paparini D, et al. Interplay between neutrophils and trophoblast cells conditions trophoblast function and triggers vascular transformation signals. J Cell Physiol. 2020;235:3592–603.
Svensson J, Jenmalm MC, Matussek A, Geffers R, Berg G, Ernerudh J. Macrophages at the fetal-maternal interface express markers of alternative activation and are induced by M-CSF and IL-10. J Immunol [Internet]. 2011;187:3671–82. http://www.jimmunol.org/cgi/doi/https://doi.org/10.4049/jimmunol.1100130
Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. GenePattern 2.0. Nat Genet. 2006;38:500–1.
R Core Team. R Core Team. (2022) R: A language and environment for statistical computing. Vienna; 2022.
Smyth G, [cre. aut]. limma. Linear Models for Microarray Data. 2017.
Fang Z, Liu X, Peltz G. GSEApy: a comprehensive package for performing gene set enrichment analysis in Python. Bioinformatics. 2023;39.
Freemerman AJ, Johnson AR, Sacks GN, Milner JJ, Kirk EL, Troester MA, et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J Biol Chem. 2014;289:7884–96.
Article PubMed Central CAS Google Scholar
Van den Bossche J, O’Neill LA, Menon D. Macrophage immunometabolism: where are we (going)? Trends Immunol. Elsevier Ltd; 2017. pp. 395–406.
Verberk SGS, de Goede KE, Gorki FS, van Dierendonck XAMH, Argüello RJ. Van Den Bossche J. An integrated toolbox to profile macrophage immunometabolism. Cell Rep Methods. 2022;2.
Hetz C. The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012. pp. 89–102.
Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334:1081–6.
Article PubMed CAS Google Scholar
Ribeiro CMP, Lubamba BA. Role of IRE1α/XBP-1 in cystic fibrosis airway inflammation. Int J Mol Sci. MDPI AG; 2017.
Huang S, Xing Y, Liu Y. Emerging roles for the ER stress sensor IRE1 in metabolic regulation and disease. J Biol Chem. 2019;294:18726–41.
Article PubMed Central CAS Google Scholar
Schurz H, Salie M, Tromp G, Hoal EG, Kinnear CJ, Möller M. The X chromosome and sex-specific effects in infectious disease susceptibility. Hum Genomics. 2019;13:2.
Article PubMed Central Google Scholar
Capone I, Marchetti P, Ascierto PA, Malorni W, Gabriele L. Sexual dimorphism of Immune responses: a new perspective in cancer immunotherapy. Front Immunol. 2018;9.
Dearden L, Bouret SG, Ozanne SE. Sex and gender differences in developmental programming of metabolism. Mol Metab. Elsevier GmbH; 2018. pp. 8–19.
Bouman A, Heineman MJ, Faas MM. Sex hormones and the immune response in humans. Hum Reprod Update. 2005;11:411–23.
Markle JG, Fish EN. SeXX matters in immunity. Trends Immunol. 2014;35:97–104.
Trigunaite A, Dimo J, Jørgensen TN. Suppressive effects of androgens on the immune system. Cell Immunol. 2015;294:87–94.
Dolfi B, Gallerand A, Firulyova MM, Xu Y, Merlin J, Dumont A, et al. Unravelling the sex-specific diversity and functions of adrenal gland macrophages. Cell Rep. 2022;39:110949.
留言 (0)