Jacobson, D. L., Gange, S. J., Rose, N. R. & Graham, N. M. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin. Immunol. Immunopathol. 84, 223–243 (1997).
Article CAS PubMed Google Scholar
Marrack, P., Kappler, J. & Kotzin, B. L. Autoimmune disease: why and where it occurs. Nat. Med. 7, 899–905 (2001).
Article CAS PubMed Google Scholar
Cox, D. B., Platt, R. J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121–131 (2015).
Article CAS PubMed PubMed Central Google Scholar
Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11, 636–646 (2010).
Article CAS PubMed Google Scholar
Bogdanove, A. J. & Voytas, D. F. TAL effectors: customizable proteins for DNA targeting. Science 333, 1843–1846 (2011).
Article CAS PubMed Google Scholar
Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).
Article CAS PubMed PubMed Central Google Scholar
Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).
Article CAS PubMed PubMed Central Google Scholar
Guo, C., Ma, X., Gao, F. & Guo, Y. Off-target effects in CRISPR/Cas9 gene editing. Front. Bioeng. Biotechnol. 11, 1143157 (2023).
Article PubMed PubMed Central Google Scholar
Kouranova, E. et al. CRISPRs for optimal targeting: delivery of CRISPR components as DNA, RNA, and protein into cultured cells and single-cell embryos. Hum. Gene Ther. 27, 464–475 (2016).
Article CAS PubMed PubMed Central Google Scholar
Kumar, R. et al. Polymeric delivery of therapeutic nucleic acids. Chem. Rev. 121, 11527–11652 (2021).
Article CAS PubMed Google Scholar
Sahel, D. K. et al. CRISPR/Cas9 genome editing for tissue-specific in vivo targeting: nanomaterials and translational perspective. Adv. Sci. 10, e2305072 (2023).
Pesch, T. et al. Molecular design, optimization, and genomic integration of chimeric B cell receptors in murine B cells. Front. Immunol. 10, 2630 (2019).
Article CAS PubMed PubMed Central Google Scholar
Yang, Y. A.-O., Wang, D., Lü, P., Ma, S. & Chen, K. Research progress on nucleic acid detection and genome editing of CRISPR/Cas12 system. Mol. Biol. Rep. 50, 3723–3738 (2019).
Senthilnathan, R. A.-O. X. et al. An update on CRISPR-Cas12 as a versatile tool in genome editing. Mol. Biol. Rep. 50, 2865–2881 (2019).
Liu, H., Zhu, Y., Li, M. & Gu, Z. A.-O. Precise genome editing with base editors. Med. Rev. 22, 75–84 (2019).
Doman, J. L., Sousa, A. A., Randolph, P. B., Chen, P. J. & Liu, D. R. Designing and executing prime editing experiments in mammalian cells. Nat. Protoc. 17, 2431–2468 (2022).
Article CAS PubMed PubMed Central Google Scholar
Zhao, Z., Shang, P., Mohanraju, P. & Geijsen, N. Prime editing: advances and therapeutic applications. Trends Biotechnol. 41, 1000–1012 (2022).
Chen, P. J. & Liu, D. R. Prime editing for precise and highly versatile genome manipulation. Nat. Rev. Genet. 24, 161–177 (2023).
Article CAS PubMed Google Scholar
Zhou, T. et al. Lupus enhancer risk variant causes dysregulation of IRF8 through cooperative lncRNA and DNA methylation machinery. Nat. Commun. 13, 1855 (2022).
Article CAS PubMed PubMed Central Google Scholar
Bhowmik, R. & Chaubey, B. CRISPR/Cas9: a tool to eradicate HIV-1. AIDS Res. Ther. 19, 58 (2022).
Article PubMed PubMed Central Google Scholar
Stefanoudakis, D. et al. The potential revolution of cancer treatment with CRISPR technology. Cancers 15, 1813 (2023).
Article CAS PubMed PubMed Central Google Scholar
Legut, M., Dolton, G., Mian, A. A., Ottmann, O. G. & Sewell, A. K. CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells. Blood 131, 311–322 (2018).
Article CAS PubMed PubMed Central Google Scholar
Ray, M. et al. CRISPRed macrophages for cell-based cancer immunotherapy. Bioconjug. Chem. 29, 445–450 (2018).
Article CAS PubMed PubMed Central Google Scholar
Xu, C. et al. Targeting of NLRP3 inflammasome with gene editing for the amelioration of inflammatory diseases. Nat. Commun. 9, 4092 (2018).
Article PubMed PubMed Central Google Scholar
Limanskiy, V., Vyas, A., Chaturvedi, L. S. & Vyas, D. Harnessing the potential of gene editing technology using CRISPR in inflammatory bowel disease. World J. Gastroenterol. 25, 2177–2187 (2019).
Article CAS PubMed PubMed Central Google Scholar
Bevacqua, R. J. et al. CRISPR-based genome editing in primary human pancreatic islet cells. Nat. Commun. 12, 2397 (2021).
Article CAS PubMed PubMed Central Google Scholar
Baker, C. & Hayden, M. S. Gene editing in dermatology: harnessing CRISPR for the treatment of cutaneous disease. F1000Res. 9, 281 (2020).
Article CAS PubMed PubMed Central Google Scholar
Lin, W. et al. Tumor-intrinsic YTHDF1 drives immune evasion and resistance to immune checkpoint inhibitors via promoting MHC-I degradation. Nat. Commun. 14, 265 (2023).
Article CAS PubMed PubMed Central Google Scholar
Levy, E. C., J., Reger, R., Allan, D. & Childs, R. RNA-seq analysis reveals CCR5 as a key target for CRISPR gene editing to regulate in vivo NK cell trafficking. Cancers 13, 872 (2021).
Article CAS PubMed PubMed Central Google Scholar
Guo, X. et al. CBLB ablation with CRISPR/Cas9 enhances cytotoxicity of human placental stem cell-derived NK cells for cancer immunotherapy. J. Immunother. Cancer 9, e001975 (2021).
Article PubMed PubMed Central Google Scholar
Greiner, V. et al. CRISPR-mediated editing of the B cell receptor in primary human B cells. iScience 12, 369–378 (2019).
Article CAS PubMed PubMed Central Google Scholar
Zhang, H. et al. CRISPR/Cas9-mediated gene editing in human iPSC-derived macrophage reveals lysosomal acid lipase function in human macrophages — brief report. Arterioscler. Thromb. Vasc. Biol. 37, 2156–2160 (2017).
留言 (0)