Identification of potential biomarkers of papillary thyroid carcinoma

R.L. Siegel, A.N. Giaquinto, A. Jemal, Cancer statistics, 2024. CA. Cancer J. Clin. 74, 12–49 (2024).

Article  PubMed  Google Scholar 

B. Scott, R.J. Wong, Step-by-Step Thyroidectomy-Incision, check for updates nerve identification, parathyroid preservation, and gland removal. Otolaryngol. Clin. N. Am. E-Book 57, 25 (2023).

Article  Google Scholar 

Y. Deng et al. Global burden of thyroid cancer from 1990 to 2017. JAMA Netw. Open 3, e208759–e208759 (2020).

Article  PubMed  PubMed Central  Google Scholar 

H. Gharib et al. American Association of Clinical Endocrinologists and Associazione Medici Endocrinologi Medical Guidelines for Clinical Practice for the Diagnosis and Management of thyroid nodules. Endocr. Pract. 12, 63–102 (2006).

Article  PubMed  Google Scholar 

L. Fugazzola, M. Muzza, G. Pogliaghi, M. Vitale, Intratumoral genetic heterogeneity in papillary thyroid cancer: occurrence and clinical significance. Cancers 12, 383 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Liao, Z. Wang, J. Yao, H. Xing, Y. Hao, B. Qiu, Identification of potential biomarkers for papillary thyroid carcinoma by comprehensive bioinformatics analysis. Mol. Cell. Biochem. 478, 2111–2123 (2023).

Article  CAS  PubMed  Google Scholar 

I. Petrini, R.L. Cecchini, M. Mascaró, I. Ponzoni, J.A. Carballido, Papillary thyroid carcinoma: a thorough bioinformatic analysis of gene expression and clinical data. Genes 14, 1250 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

H. Ren, X. Liu, F. Li, X. He, N. Zhao, Identification of a six gene prognosis signature for papillary thyroid cancer using multi-omics methods and bioinformatics analysis. Front. Oncol. 11, 624421 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

J. Shang, Q. Ding, S. Yuan, J.-X. Liu, F. Li, H. Zhang, Network analyses of integrated differentially expressed genes in papillary thyroid carcinoma to identify characteristic genes. Genes 10, 45 (2019).

Article  PubMed  PubMed Central  Google Scholar 

S. Li, Y. Yin, H. Yu, Genetic expression profile‑based screening of genes and pathways associated with papillary thyroid carcinoma. Oncol. Lett. (2018). https://doi.org/10.3892/ol.2018.9342

V. Vasko et al. Gene expression and functional evidence of epithelial-to-mesenchymal transition in papillary thyroid carcinoma invasion. Proc. Natl. Acad. Sci. 104, 2803–2808 (2007). https://doi.org/10.1073/pnas.0610733104

Article  CAS  PubMed  PubMed Central  Google Scholar 

H. He et al. The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl. Acad. Sci. 102, 19075–19080 (2005). https://doi.org/10.1073/pnas.0509603102

Article  CAS  PubMed  PubMed Central  Google Scholar 

G. Tomás et al. A general method to derive robust organ-specific gene expression-based differentiation indices: application to thyroid cancer diagnostic. Oncogene 31, 4490–4498 (2012).

Article  PubMed  Google Scholar 

D. Anguita, L. Ghelardoni, A. Ghio, L. Oneto, S. Ridella, “The’K’in K-fold Cross Validation.,” in ESANN, 2012, pp. 441–446. Accessed: Aug. 25, 2024. [Online].

G.K. Smyth, Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, 1–25 (2004). https://doi.org/10.2202/1544-6115.1027

Article  Google Scholar 

Y. Benjamini, D. Drai, G. Elmer, N. Kafkafi, I. Golani, Controlling the false discovery rate in behavior genetics research. Behav. Brain Res. 125, 279–284 (2001).

Article  CAS  PubMed  Google Scholar 

Y. Bei, P. Hong, A novel approach to minimize false discovery rate in genome-wide data analysis. BMC Syst. Biol. 7, S1 (2013). https://doi.org/10.1186/1752-0509-7-S4-S1

Article  PubMed  PubMed Central  Google Scholar 

A. Reiner, D. Yekutieli, Y. Benjamini, Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 19, 368–375 (2003).

Article  CAS  PubMed  Google Scholar 

R. Stevens, C.A. Goble, S. Bechhofer, Ontology-based knowledge representation for bioinformatics. Brief. Bioinform. 1, 398–414 (2000).

Article  CAS  PubMed  Google Scholar 

M. Kanehisa et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36, D480–D484 (2007).

Article  PubMed  PubMed Central  Google Scholar 

H. Wickham, ggplot2. in Use R! Cham: Springer International Publishing, (2016). https://doi.org/10.1007/978-3-319-24277-4

C.-H. Gao, G. Yu, and P. Cai, ggVennDiagram: an intuitive, easy-to-use, and highly customizable R package to generate Venn diagram. Front. Genet., 1598 (2021).

P. Braun, A. Gingras, History of protein–protein interactions: From egg‐white to complex networks. PROTEOMICS 12, 1478–1498 (2012). https://doi.org/10.1002/pmic.201100563

Article  CAS  PubMed  Google Scholar 

L. Breiman, Random forests. Mach. Learn. 45, 5–32 (2001)

Article  Google Scholar 

T. Mahboob, S. Irfan, A. Karamat, “A machine learning approach for student assessment in E-learning using Quinlan’s C4. 5, Naive Bayes and Random Forest algorithms,” in 2016 19th International Multi-topic Conference (INMIC), IEEE, 2016, pp. 1–8. Accessed: Feb. 05, 2024.

S.G. Eraldemir, M.T. Arslan, Y. Esen, “Comparison of random forest and J48 decision tree classifiers using HHT based features in EEG,” in International Advanced Researches & Engineering Congress-2017, 2017. Accessed: Feb. 05, 2024.

S. Kilicarslan, A. Kemal, O. Cömert, Parçacık sürü optimizasyonu kullanılarak boyutu azaltılmış mikrodizi verileri üzerinde makine öğrenmesi yöntemleri ile prostat kanseri teşhisi. Düzce Üniversitesi Bilim Ve Teknol. Derg. 7, 769–777 (2019).

Article  Google Scholar 

S. Kilicarslan, M. Celik, Ş. Sahin, “Hybrid models based on genetic algorithm and deep learning algorithms for nutritional Anemia disease classification,”. Biomed. Signal Process. Control 63, 102231 (2021).

Article  Google Scholar 

T.M. Cover, Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. Electron. Comput. 3, 326–334 (1965).

Article  Google Scholar 

V. Vapnik, The nature of statistical learning theory. Springer science & business media, 1999. Accessed: Feb. 05, 2024.

S. Kiliçarslan and E. Dönmez, Improved multi-layer hybrid adaptive particle swarm optimization based artificial bee colony for optimizing feature selection and classification of microarray data. Multimed. Tools Appl. (2023), https://doi.org/10.1007/s11042-023-17234-4

J. Li et al. Feature selection: a data perspective. ACM Comput. Surv. 50, 1–45 (2018). https://doi.org/10.1145/3136625

Article  Google Scholar 

F. Aragón-Royón, A. Jiménez-Vílchez, A. Arauzo-Azofra, J.M. Benítez, FSinR: an exhaustive package for feature selection. (2020). arXiv: arXiv:2002.10330.

M. Kuhn, Caret package. J. Stat. Softw. 28, 1–26 (2008).

Google Scholar 

S. García, A. Fernández, J. Luengo, F. Herrera, A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability. Soft Comput. 13, 959–977 (2009).

Article  Google Scholar 

M. Doshi, Correlation based feature selection (CFS) technique to predict student performance. Int. J. Comput. Netw. Commun. 6, 197 (2014).

Article  Google Scholar 

R.J. Urbanowicz, M. Meeker, W. La Cava, R.S. Olson, J.H. Moore, Relief-based feature selection: Introduction and review. J. Biomed. Inform. 85, 189–203 (2018).

Article  PubMed  PubMed Central  Google Scholar 

D. Meng, Z. Li, X. Ma, L. Wu, L. Fu, G. Qin, ETV5 overexpression contributes to tumor growth and progression of thyroid cancer through PIK3CA. Life Sci. 253, 117693 (2020).

Article  CAS  PubMed  Google Scholar 

S.M. Gaikwad, L. Gunjal, A.R. Junutula, A. Astanehe, S.S. Gambhir, P. Ray, Non-invasive imaging of phosphoinositide-3-kinase-catalytic-subunit-alpha (PIK3CA) promoter modulation in small animal models. PLoS One 8, e55971 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

C. Da et al. N-cadherin promotes thyroid tumorigenesis through modulating major signaling pathways. Oncotarget 8, 8131 (2017).

Article  PubMed  Google Scholar 

X. Lin et al. TFF3 contributes to epithelial-mesenchymal transition (EMT) in papillary thyroid carcinoma cells via the MAPK/ERK signaling pathway. J. Cancer 9, 4430 (2018).

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif