Redfield MM, Jacobsen SJ, Burnett JC, et al. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA. 2003;289:194.
Kuznetsova T, Herbots L, López B, et al. Prevalence of left ventricular diastolic dysfunction in a general population. Circ: Heart Fail. 2009;2:105–12.
Kloch-Badelek M, Kuznetsova T, Sakiewicz W, et al. Prevalence of left ventricular diastolic dysfunction in European populations based on cross-validated diagnostic thresholds. Cardiovasc Ultrasound. 2012;10:10.
PubMed PubMed Central Google Scholar
Rasmussen-Torvik LJ, Colangelo LA, Lima JAC, et al. Prevalence and predictors of diastolic dysfunction according to different classification criteria. Am J Epidemiol. 2017;185:1221–7.
PubMed PubMed Central Google Scholar
Nagueh SF, Smiseth OA, Appleton CP, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the american society of echocardiography and the european association of cardiovascular imaging. Eur Heart J Cardiovasc Imaging. 2016;17:1321–60.
Lancellotti P, Galderisi M, Edvardsen T, et al. Echo-Doppler estimation of left ventricular filling pressure: results of the multicentre EACVI euro-filling study. Eur Heart J - Cardiovasc Imaging. 2017;18:961–8.
Almeida JG, Fontes-Carvalho R, Sampaio F, et al. Impact of the 2016 ASE/EACVI recommendations on the prevalence of diastolic dysfunction in the general population. Eur Heart J - Cardiovasc Imaging. 2018;19:380–6.
Kimura K, Takenaka K, Ebihara A, et al. Speckle tracking global strain rate E/E′ predicts LV filling pressure more accurately than traditional tissue doppler E/E′: speckle tracking global strain rate E/E′ vs traditional tissue doppler E/E′. Echocardiography. 2012;29:404–10.
Dokainish H, Sengupta R, Pillai M, et al. Usefulness of new diastolic strain and strain rate indexes for the estimation of left ventricular filling pressure. Am J Cardiol. 2008;101:1504–9.
Morris DA, Takeuchi M, Nakatani S, et al. Lower limit of normality and clinical relevance of left ventricular early diastolic strain rate for the detection of left ventricular diastolic dysfunction. Eur Heart J - Cardiovasc Imaging. 2018;19:905–15.
Liu D, Hu K, Störk S, et al. Predictive value of assessing diastolic strain rate on survival in cardiac amyloidosis patients with preserved ejection fraction Gonzalez GE, editor. PLoS ONE. 2014;9: e115910.
PubMed PubMed Central Google Scholar
Ersboll M, Andersen MJ, Valeur N, et al. Early diastolic strain rate in relation to systolic and diastolic function and prognosis in acute myocardial infarction: a two-dimensional speckle-tracking study. Eur Heart J. 2014;35:648–56.
Chan Y-H, Lee H-F, Wu L-S, et al. Ratio of transmitral early filling velocity to early diastolic strain rate predicts outcomes in patients with systolic heart failure. Eur Heart J Cardiovasc Imaging. 2017;18:79–85.
Dahl JS, Barros-Gomes S, Videbæk L, et al. Early diastolic strain rate in relation to systolic and diastolic function and prognosis in aortic stenosis. JACC Cardiovasc Imaging. 2016;9:519–28.
Goebel B, Haugaa KH, Meyer K, et al. Early diastolic strain rate predicts response to heart failure therapy in patients with dilated cardiomyopathy. Int J Cardiovasc Imaging. 2014;30:505–13.
Lassen MCH, Biering-Sørensen SR, Olsen FJ, et al. Ratio of transmitral early filling velocity to early diastolic strain rate predicts long-term risk of cardiovascular morbidity and mortality in the general population. Eur Heart J. 2019;40:518–25.
Wang J, Khoury DS, Thohan V, et al. Global diastolic strain rate for the assessment of left ventricular relaxation and filling pressures. Circulation. 2007;115:1376–83.
Shanks M, Ng ACT, Van De Veire NRL, et al. Incremental prognostic value of novel left ventricular diastolic indexes for prediction of clinical outcome in patients with ST-elevation myocardial infarction. Am J Cardiol. 2010;105:592–7.
Jasaityte R, D’hooge J. Strain rate imaging: fundamental principles and progress so far. Imaging Med. 2010;2:547–63.
Edvardsen T, Gerber BL, Garot J, et al. Quantitative assessment of intrinsic regional myocardial deformation by doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation. 2002;106:50–6.
Gottdiener JS, Bednarz J, Devereux R, et al. American Society of Echocardiography recommendations for use of echocardiography in clinical trials. J Am Soc Echocardiogr. 2004;17:1086–119.
Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1-39.e14.
Claus P, D’hooge J, Langeland TM, et al. SPEQLE (Software package for echocardiographic quantification LEuven) an integrated approach to ultrasound-based cardiac deformation quantification. Computers in Cardiology [Internet]. Memphis, TN, USA: IEEE; 2002 [cited 2023 Apr 26]. p. 69–72. Available from: http://ieeexplore.ieee.org/document/1166709/
Sun JP, Popović ZB, Greenberg NL, et al. Noninvasive quantification of regional myocardial function using Doppler-derived velocity, displacement, strain rate, and strain in healthy volunteers: effects of aging. J Am Soc Echocardiogr. 2004;17:132–8.
Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41:111–88.
Park J-H, Marwick TH. Use and limitations of E/e’ to assess left ventricular filling pressure by echocardiography. J Cardiovasc Ultrasound. 2011;19:169.
PubMed PubMed Central Google Scholar
Sengupta PP, Korinek J, Belohlavek M, et al. Left ventricular structure and function. J Am Coll Cardiol. 2006;48:1988–2001.
Voigt J. Incidence and characteristics of segmental postsystolic longitudinal shortening in normal, acutely ischemic, and scarred myocardium. J Am Soc Echocardiogr. 2003;16:415–23.
Chirinos JA, Segers P, Rietzschel ER, et al. Early and late systolic wall stress differentially relate to myocardial contraction and relaxation in middle-aged adults: the asklepios study. Hypertension. 2013;61:296–303.
Chirinos JA, Kips JG, Jacobs DR, et al. Arterial wave reflections and incident cardiovascular events and heart failure. J Am Coll Cardiol. 2012;60:2170–7.
PubMed PubMed Central Google Scholar
Yuan S, Kongstad O, Hertervig E, et al. Global repolarization sequence of the ventricular endocardium: monophasic action potential mapping in swine and humans. Pacing Clin Electrophysiol. 2001;24:1479–88.
Ferreira-Martins J, Leite-Moreira AF. Physiologic basis and pathophysiologic implications of the diastolic properties of the cardiac muscle. J Biomed Biotechnol. 2010;2010:1–12.
LeWinter MM, Fabian J, Bell SP. Left ventricular restoring forces: modulation by heart rate and contractility. Basic Res Cardiol. 1998;93:s143–7.
Cho M-J, Lee J-W, Lee J, et al. Evaluation of early left ventricular dysfunction in patients with duchenne muscular dystrophy using two-dimensional speckle tracking echocardiography and tissue doppler imaging. Pediatr Cardiol. 2018;39:1614–9.
Moon J. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease evidence for a disease specific abnormality of the myocardial interstitium. Eur Heart J. 2003;24:2151–5.
Mertens L, Ganame J, Claus P, et al. Early regional myocardial dysfunction in young patients with duchenne muscular dystrophy. J Am Soc Echocardiogr. 2008;21:1049–54.
Yatabe S, Kumada T, Hiro T, et al. The effect of left ventricular wall motion during isovolumetric relaxation period in coronary artery disease. Jpn Circ J. 1989;53:766–72.
Nesto RW, Kowalchuk GJ. The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic expressions of ischemia. Am J Cardiol. 1987;59:C23-30.
Aroesty JM, McKay RG, Heller GV, et al. Simultaneous assessment of left ventricular systolic and diastolic dysfunction during pacing-induced ischemia. Circulation. 1985;71:889–900.
Abraham TP, Dimaano VL, Liang H-Y. Role of tissue doppler and strain echocardiography in current clinical practice. Circulation. 2007;116:2597–609.
Ferferieva V, Van Den Bergh A, Claus P, et al. Assessment of strain and strain rate by two-dimensional speckle tracking in mice: comparison with tissue Doppler echocardiography and conductance catheter measurements. Eur Heart J - Cardiovasc Imaging. 2013;14:765–73.
Orlowska M, Ramalli A, Petrescu A, et al. A novel 2-D speckle tracking method for high-frame-rate echocardiography. IEEE Trans Ultrason, Ferroelect, Freq Contr. 2020;67:1764–75.
Papangelopoulou K, Orlowska M, Bezy S, et al. Validation of novel biomarkers to assess cardiac diastolic function extracted using a high frame rate speckle tracking algorithm. 2021 IEEE International Ultrasonics Symposium (IUS) [Internet]. Xi’an, China: IEEE; 2021 [cited 2023 May 2]. p. 1–4. Available from: https://ieeexplore.ieee.org/document/9593478/
Peduzzi P, Concato J, Feinstein AR, et al. Importance of events per independent variable in proportional hazards regression analysis II. Accuracy and precision of regression estimates. J Clin Epidemiol. 1995;48:1503–10.
留言 (0)