Dapagliflozin treatment decreases visceral and subcutaneous adipose tissue: a systematic review and meta-analysis

Fruh SM. Obesity: risk factors, complications, and strategies for sustainable long-term weight management. J Am Assoc Nurse Pract. 2017;29(S1):S3–14. https://doi.org/10.1002/2327-6924.12510.

Article  PubMed  PubMed Central  Google Scholar 

Schetz M, De Jong A, Deane AM, Druml W, Hemelaar P, Pelosi P, et al. Obesity in the critically ill: a narrative review. Intensive Care Med. 2019;45(6):757–69. https://doi.org/10.1007/s00134-019-05594-1.

Article  PubMed  Google Scholar 

Chooi YC, Ding C, Magkos F. The epidemiology of obesity. Metabolism. 2019;92:6–10. https://doi.org/10.1016/j.metabol.2018.09.005.

Article  PubMed  CAS  Google Scholar 

Storz C, Heber SD, Rospleszcz S, Machann J, Sellner S, Nikolaou K, et al. The role of visceral and subcutaneous adipose tissue measurements and their ratio by magnetic resonance imaging in subjects with prediabetes, diabetes and healthy controls from a general population without cardiovascular disease. Br J Radiol. 2018;91(1089):20170808. https://doi.org/10.1259/bjr.20170808.

Article  PubMed  PubMed Central  Google Scholar 

Kahn D, Macias E, Zarini S, Garfield A, Zemski Berry K, MacLean P, et al. Exploring visceral and subcutaneous adipose tissue secretomes in human obesity: implications for metabolic disease. Endocrinology. 2022;163(11):bqac140. https://doi.org/10.1210/endocr/bqac140.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mittal B. Subcutaneous adipose tissue & visceral adipose tissue. Indian J Med Res. 2019;149(5):571–3. https://doi.org/10.4103/ijmr.IJMR_1910_18.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Shapses SA, Pop LC, Wang Y. Obesity is a concern for bone health with aging. Nutr Res. 2017;39:1–13. https://doi.org/10.1016/j.nutres.2016.12.010.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Mármol GV, De Los LM, Oliva J, Giménez C. Efficacy and safety of subcutaneous fat reduction by cryoadipolysis. Int Res J Pharm Med Sci (IRJPMS). 2019;2(3):38–43.

Google Scholar 

Dhillon S. Dapagliflozin: a review in type 2 diabetes. Drugs. 2019;79(10):1135–46. https://doi.org/10.1007/s40265-019-01148-3.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zargar AH, Trailokya AA, Ghag S, Pawar R, Aiwale A, Zalke A. Current role of dapagliflozin in clinical practice. J Assoc Physicians India. 2021;69(9):11–2.

PubMed  Google Scholar 

Albarran OG, Ampudia-Blasco FJ. Dapagliflozin, the first SGLT-2 inhibitor in the treatment of type 2 diabetes. Med Clin (Barc). 2013;141(Suppl 2):36–43. https://doi.org/10.1016/S0025-7753(13)70062-9.

Article  PubMed  Google Scholar 

Aso Y, Kato K, Sakurai S, Kishi H, Shimizu M, Jojima T, et al. Impact of dapagliflozin, an SGLT2 inhibitor, on serum levels of soluble dipeptidyl peptidase-4 in patients with type 2 diabetes and non-alcoholic fatty liver disease. Int J Clin Pract. 2019;73(5): e13335. https://doi.org/10.1111/ijcp.13335.

Article  PubMed  CAS  Google Scholar 

Eriksson JW, Lundkvist P, Jansson PA, Johansson L, Kvarnström M, Moris L, et al. Effects of dapagliflozin and n-3 carboxylic acids on non-alcoholic fatty liver disease in people with type 2 diabetes: a double-blind randomised placebo-controlled study. Diabetologia. 2018;61(9):1923–34. https://doi.org/10.1007/s00125-018-4675-2.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Shimizu M, Suzuki K, Kato K, Jojima T, Iijima T, Murohisa T, et al. Evaluation of the effects of dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, on hepatic steatosis and fibrosis using transient elastography in patients with type 2 diabetes and non-alcoholic fatty liver disease. Diabetes Obes Metab. 2019;21(2):285–92. https://doi.org/10.1111/dom.13520.

Article  PubMed  CAS  Google Scholar 

Kato K, Suzuki K, Aoki C, Sagara M, Niitani T, Wakamatsu S, et al. The effects of intermittent use of the SGLT-2 inhibitor, dapagliflozin, in overweight patients with type 2 diabetes in Japan: a randomized, crossover, controlled clinical trial. Expert Opin Pharmacother. 2017;18(8):743–51. https://doi.org/10.1080/14656566.2017.1317748.

Article  PubMed  CAS  Google Scholar 

Gu Y, Sun L, Zhang W, Kong T, Zhou R, He Y, et al. Comparative efficacy of 5 sodium-glucose cotransporter protein-2 (SGLT-2) inhibitor and 4 glucagon-like peptide-1 (GLP-1) receptor agonist drugs in non-alcoholic fatty liver disease: a GRADE-assessed systematic review and network meta-analysis of randomized controlled trials. Front Pharmacol. 2023;14:1102792. https://doi.org/10.3389/fphar.2023.1102792.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Hameed I, Hayat J, Marsia S, Samad SA, Khan R, Siddiqui OM, et al. Comparison of sodium-glucose cotransporter-2 inhibitors and thiazolidinediones for management of non-alcoholic fatty liver disease: a systematic review and meta-analysis. Clin Res Hepatol Gastroenterol. 2023;47(5): 102111. https://doi.org/10.1016/j.clinre.2023.102111.

Article  PubMed  CAS  Google Scholar 

Pan R, Zhang Y, Wang R, Xu Y, Ji H, Zhao Y. Effect of SGLT-2 inhibitors on body composition in patients with type 2 diabetes mellitus: a meta-analysis of randomized controlled trials. PLoS One. 2022;17(12): e0279889. https://doi.org/10.1371/journal.pone.0279889.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Zhang S, Qi Z, Wang Y, Song D, Zhu D. Effect of sodium-glucose transporter 2 inhibitors on sarcopenia in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Front Endocrinol (Lausanne). 2023;14:1203666. https://doi.org/10.3389/fendo.2023.1203666.

Article  PubMed  Google Scholar 

Wang X, Wu N, Sun C, Jin D, Lu H. Effects of SGLT-2 inhibitors on adipose tissue distribution in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. Diabetol Metab Syndr. 2023;15(1):113. https://doi.org/10.1186/s13098-023-01085-y.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Canadian Agency for Drugs and Technologies in Health (2017) Pharmacoeconomic Review Report: Empagliflozin and Metformin Fixed-Dose Combination (Synjardy). Ottawa (ON). https://www.ncbi.nlm.nih.gov/books/NBK532803/. Accessed May 2024

Atal S, Fatima Z, Singh S, Balakrishnan S, Joshi R. Remogliflozin: the new low cost SGLT-2 inhibitor for type 2 diabetes mellitus. Diabetol Int. 2021;12(3):247–53. https://doi.org/10.1007/s13340-020-00472-4.

Article  PubMed  Google Scholar 

Miller BR, Nguyen H, Hu CJ, Lin C, Nguyen QT. New and emerging drugs and targets for type 2 diabetes: reviewing the evidence. Am Health Drug Benefits. 2014;7(8):452–63.

PubMed  PubMed Central  CAS  Google Scholar 

Padda IS, Mahtani AU, Parmar M (2024) Sodium-Glucose Transport Protein 2 (SGLT2) Inhibitors. https://www.ncbi.nlm.nih.gov/books/NBK576405/. Accessed Feb 2024

Grempler R, Thomas L, Eckhardt M, Himmelsbach F, Sauer A, Sharp DE, et al. Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors. Diabetes Obes Metab. 2012;14(1):83–90. https://doi.org/10.1111/j.1463-1326.2011.01517.x.

Article  PubMed  CAS  Google Scholar 

Shi Z, Gao F, Liu W, He X. Comparative efficacy of dapagliflozin and empagliflozin of a fixed dose in heart failure: a network meta-analysis. Front Cardiovasc Med. 2022;9: 869272. https://doi.org/10.3389/fcvm.2022.869272.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lin YH, Huang YY, Hsieh SH, Sun JH, Chen ST, Lin CH. Renal and glucose-lowering effects of empagliflozin and dapagliflozin in different chronic kidney disease stages. Front Endocrinol (Lausanne). 2019;10:820. https://doi.org/10.3389/fendo.2019.00820.

Article  PubMed  Google Scholar 

Alnsasra H, Tsaban G, Solomon A, Khalil F, Aboalhasan E, Azab AN, et al. Dapagliflozin versus empagliflozin in patients with chronic kidney disease. Front Pharmacol. 2023;14:1227199. https://doi.org/10.3389/fphar.2023.1227199.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Methley AM, Campbell S, Chew-Graham C, McNally R, Cheraghi-Sohi S. PICO, PICOS and SPIDER: a comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv Res. 2014;14:579. https://doi.org/10.1186/s12913-014-0579-0.

Article 

留言 (0)

沒有登入
gif