The contribution of seasonal variations and Zostera marina presence to the bacterial community assembly of seagrass bed sediments

Shpigel M, Guttman L, Shauli L, Odintsov V, Ben-Ezra D, Harpaz S. Ulva lactuca from an integrated multi-trophic aquaculture (IMTA) biofilter system as a protein supplement in gilthead seabream (Sparus aurata) diet. Aquaculture. 2017;481:112–8.

Article  CAS  Google Scholar 

Duarte B, Martins I, Rosa R, Matos AR, Roleda MY, Reusch TB, Engelen AH, Serrão EA, Pearson GA, Marques JC. Climate change impacts on seagrass meadows and macroalgal forests: an integrative perspective on acclimation and adaptation potential. Front Mar Sci. 2018;5:190.

Article  Google Scholar 

Unsworth RK, Cullen-Unsworth LC, Jones BL, Lilley RJ. The planetary role of seagrass conservation. Sci (New York NY). 2022;377(6606):609–13.

Article  CAS  Google Scholar 

Fahimipour AK, Kardish MR, Lang JM, Green JL, Eisen JA, Stachowicz JJ. Global-scale structure of the eelgrass microbiome. Appl Environ Microbiol. 2017;83(12):e03391–03316.

Article  PubMed  PubMed Central  Google Scholar 

Cúcio C, Engelen AH, Costa R, Muyzer G. Rhizosphere microbiomes of European seagrasses are selected by the plant, but are not species specific. Front Microbiol. 2016;7:440.

Article  PubMed  PubMed Central  Google Scholar 

Jensen SI, Kühl M, Priemé A. Different bacterial communities associated with the roots and bulk sediment of the seagrass Zostera marina. FEMS Microbiol Ecol. 2007;62(1):108–17.

Article  PubMed  CAS  Google Scholar 

Chen J, Zang Y, Yang Z, Qu T, Sun T, Liang S, Zhu M, Wang Y, Tang X. Composition and functional diversity of epiphytic bacterial and fungal communities on Marine macrophytes in an intertidal zone. Front Microbiol. 2022;13:839465.

Article  PubMed  PubMed Central  Google Scholar 

Tarquinio F, Hyndes GA, Laverock B, Koenders A, Säwström C. The seagrass holobiont: understanding seagrass-bacteria interactions and their role in seagrass ecosystem functioning. FEMS Microbiol Lett 2019, 366(6).

Turner TR, James EK, Poole PS. The plant microbiome. Genome Biol. 2013;14(6):1–10.

Article  Google Scholar 

Berg G, Grube M, Schloter M, Smalla K. Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 2014, 5.

Xie H, Chen Z, Feng X, Wang M, Luo Y, Wang Y, Xu P. L-theanine exuded from Camellia sinensis roots regulates element cycling in soil by shaping the rhizosphere microbiome assembly. Sci Total Environ. 2022;837:155801.

Article  PubMed  CAS  Google Scholar 

Hu L, Robert CA, Cadot S, Zhang X, Ye M, Li B, Manzo D, Chervet N, Steinger T, Van Der Heijden MG. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat Commun. 2018;9(1):2738.

Article  PubMed  PubMed Central  Google Scholar 

Kawasaki A, Dennis PG, Forstner C, Raghavendra AK, Mathesius U, Richardson AE, Delhaize E, Gilliham M, Watt M, Ryan PR. Manipulating exudate composition from root apices shapes the microbiome throughout the root system. Plant Physiol. 2021;187(4):2279–95.

Article  PubMed  CAS  PubMed Central  Google Scholar 

Zhao M, Zhao J, Yuan J, Hale L, Wen T, Huang Q, Vivanco JM, Zhou J, Kowalchuk GA, Shen Q. Root exudates drive soil-microbe‐nutrient feedbacks in response to plant growth. Plant Cell Environ. 2021;44(2):613–28.

Article  PubMed  CAS  Google Scholar 

Panchal P, Preece C, Peñuelas J, Giri J. Soil carbon sequestration by root exudates. Trends Plant Sci 2022.

de Vries FT, Griffiths RI, Knight CG, Nicolitch O, Williams A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Sci (New York NY). 2020;368(6488):270–4.

Article  Google Scholar 

Wen T, Yu G-H, Hong W-D, Yuan J, Niu G-Q, Xie P-H, Sun F-S, Guo L-D, Kuzyakov Y, Shen Q-R. Root exudate chemistry affects soil carbon mobilization via microbial community reassembly. Fundamental Res. 2022;2(5):697–707.

Article  CAS  Google Scholar 

Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann M. Functional overlap of the Arabidopsis leaf and root microbiota. Nature. 2015;528(7582):364–9.

Article  PubMed  CAS  Google Scholar 

Gonin M, Salas-González I, Gopaulchan D, Frene JP, Roden S, Van de Poel B, Salt DE, Castrillo G. Plant microbiota controls an alternative root branching regulatory mechanism in plants. Proceedings of the National Academy of Sciences 2023, 120(15):e2301054120.

Hu J, Yang T, Friman V-P, Kowalchuk GA, Hautier Y, Li M, Wei Z, Xu Y, Shen Q, Jousset A. Introduction of probiotic bacterial consortia promotes plant growth via impacts on the resident rhizosphere microbiome. Proceedings of the Royal Society B 2021, 288(1960):20211396.

Sun X, Xu Z, Xie J, Hesselberg-Thomsen V, Tan T, Zheng D, Strube ML, Dragoš A, Shen Q, Zhang R. Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions. ISME J. 2022;16(3):774–87.

Article  PubMed  CAS  Google Scholar 

Larkum AW, Orth RJ, Duarte CM. Seagrasses: biology, ecologyand conservation. Phycologia. 2006;45(5):5.

Google Scholar 

Frederiksen MS, Glud RN. Oxygen dynamics in the rhizosphere of Zostera marina: a two-dimensional planar optode study. Limnol Oceanogr. 2006;51(2):1072–83.

Article  Google Scholar 

Blackburn T, Nedwell D, Wiebe W. Active mineral cycling in a Jamaican seagrass sediment. Mar Ecol Prog Ser 1994:233–9.

Hu Y, Northen TR. A sweet spot in marine ecosystems. Nat Ecol Evol. 2022;6(7):847–8.

Article  PubMed  Google Scholar 

Crump BC, Wojahn JM, Tomas F, Mueller RS. Metatranscriptomics and amplicon sequencing reveal mutualisms in seagrass microbiomes. Front Microbiol. 2018;9:388.

Article  PubMed  PubMed Central  Google Scholar 

Tarquinio F, Hyndes GA, Laverock B, Koenders A, Säwström C. The seagrass holobiont: understanding seagrass-bacteria interactions and their role in seagrass ecosystem functioning. FEMS Microbiol Lett. 2019;366(6):fnz057.

Article  PubMed  CAS  Google Scholar 

Lehnen N, Marchant HK, Schwedt A, Milucka J, Lott C, Weber M, Dekaezemacker J, Seah BK, Hach PF, Mohr W. High rates of microbial dinitrogen fixation and sulfate reduction associated with the Mediterranean seagrass Posidonia oceanica. Syst Appl Microbiol. 2016;39(7):476–83.

Article  PubMed  CAS  Google Scholar 

Borum J, Pedersen O, Greve T, Frankovich T, Zieman J, Fourqurean JW, Madden C. The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, Thalassia testudinum. J Ecol. 2005;93(1):148–58.

Article  CAS  Google Scholar 

Holmer M, Bondgaard EJ. Photosynthetic and growth response of eelgrass to low oxygen and high sulfide concentrations during hypoxic events. Aquat Bot. 2001;70(1):29–38.

Article  CAS  Google Scholar 

Martin BC, Bougoure J, Ryan MH, Bennett WW, Colmer TD, Joyce NK, Olsen YS, Kendrick GA. Oxygen loss from seagrass roots coincides with colonisation of sulphide-oxidising cable bacteria and reduces sulphide stress. ISME J. 2019;13(3):707–19.

Article  PubMed  CAS  Google Scholar 

Short FT, Polidoro B, Livingstone SR, Carpenter KE, Bandeira S, Bujang JS, Calumpong HP, Carruthers TJ, Coles RG, Dennison WC. Extinction risk assessment of the world’s seagrass species. Biol Conserv. 2011;144(7):1961–71.

Article  Google Scholar 

Waycott M, Duarte CM, Carruthers TJ, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL Jr, Hughes AR. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the national academy of sciences 2009, 106(30):12377–12381.

Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del Rio TG, et al. Defining the core Arabidopsis thaliana root microbiome. Nature. 2012;488(7409):86–90.

Article  PubMed  CAS  Google Scholar 

Costa R, Götz M, Mrotzek N, Lottmann J, Berg G, Smalla K. Effects of site and plant species on rhizosphere community structure as revealed by molecular analysis of microbial guilds. FEMS Microbiol Ecol. 2006;56(2):236–49.

Article  PubMed  CAS  Google Scholar 

Zhang X, Zhao C, Yu S, Jiang Z, Liu S, Wu Y, Huang X. Rhizosphere microbial community structure is selected by habitat but not plant species in two tropical seagrass beds. Front Microbiol. 2020;11:161.

Article  PubMed  PubMed Central  Google Scholar 

Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90.

Article  PubMed  Google Scholar 

Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27(21):2957–63.

Article  PubMed  PubMed Central  Google Scholar 

Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996–8.

Article 

留言 (0)

沒有登入
gif