Plasma metabolomics profiles and breast cancer risk

Torre LA, Siegel RL, Ward EM, Jemal A. Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol Biomark Prev. 2016;25(1):16–27.

Article  Google Scholar 

Lima SM, Kehm RD, Terry MB. Global breast cancer incidence and mortality trends by region, age-groups, and fertility patterns. EClinicalMed. 2021;38:100985.

Article  Google Scholar 

Holmes E, Wilson ID, Nicholson JK. Metabolic phenotyping in health and disease. Cell. 2008;134(5):714–7.

Article  PubMed  CAS  Google Scholar 

McCartney A, Vignoli A, Biganzoli L, et al. Metabolomics in breast cancer: a decade in review. Cancer Treat Rev. 2018;67:88–96.

Article  PubMed  Google Scholar 

Hiatt RA, Brody JG. Environmental determinants of breast cancer. Annu Rev Public Health. 2018;39(1):113–33.

Article  PubMed  Google Scholar 

Rudolph A, Chang-Claude J, Schmidt MK. Gene-environment interaction and risk of breast cancer. Br J Cancer. 2016;114(2):125–33.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Brantley KD, Zeleznik OA, Rosner B, et al. Plasma metabolomics and breast cancer risk over 20 years of follow-up among postmenopausal women in the nurses’ health study. Cancer Epidemiol Biomark Prev. 2022;31(4):839–50.

Article  CAS  Google Scholar 

Moore SC, Mazzilli KM, Sampson JN, et al. A metabolomics analysis of postmenopausal breast cancer risk in the cancer prevention study II. Metabolites. 2021;11(2):95.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lécuyer L, Victor Bala A, Deschasaux M, et al. NMR metabolomic signatures reveal predictive plasma metabolites associated with long-term risk of developing breast cancer. Int J Epidemiol. 2018;47(2):484–94.

Article  PubMed  Google Scholar 

Yoo HJ, Kim M, Kim M, et al. Analysis of metabolites and metabolic pathways in breast cancer in a Korean prospective cohort: the Korean cancer prevention study-II. Metabolomics. 2018;14(6):85.

Article  PubMed  Google Scholar 

Mrowiec K, Kurczyk A, Jelonek K, et al. Association of serum metabolome profile with the risk of breast cancer in participants of the HUNT2 study. Front Oncol. 2023;13:1116806.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jobard E, Dossus L, Baglietto L, et al. Investigation of circulating metabolites associated with breast cancer risk by untargeted metabolomics: a case-control study nested within the French E3N cohort. Br J Cancer. 2021;124(10):1734–43.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Stevens VL, Carter BD, Jacobs EJ, McCullough ML, Teras LR, Wang Y. A prospective case–cohort analysis of plasma metabolites and breast cancer risk. Breast Cancer Res. 2023;25(1):5.

Article  PubMed  PubMed Central  CAS  Google Scholar 

His M, Viallon V, Dossus L, et al. Prospective analysis of circulating metabolites and breast cancer in EPIC. BMC Med. 2019;17(1):178.

Article  PubMed  PubMed Central  Google Scholar 

Playdon MC, Ziegler RG, Sampson JN, et al. Nutritional metabolomics and breast cancer risk in a prospective study. Am J Clin Nutr. 2017;106(2):637–49.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Moore SC, Playdon MC, Sampson JN, et al. A metabolomics analysis of body mass index and postmenopausal breast cancer risk. J Natl Cancer Inst. 2018;110(6):588–97.

PubMed  PubMed Central  CAS  Google Scholar 

Terry MB, Phillips KA, Daly MB, et al. Cohort profile: the breast cancer prospective family study cohort (ProF-SC). Int J Epidemiol. 2016;45(3):683–92.

Article  PubMed  Google Scholar 

Pharoah P, Day N, Duffy S, Easton D, Ponder B. Family history and the risk of breast cancer: a systematic review and meta-analysis. Int J Cancer. 1997;71:800–9.

Article  PubMed  CAS  Google Scholar 

Braithwaite D, Miglioretti DL, Zhu W, et al. Family history and breast cancer risk among older women in the breast cancer surveillance consortium cohort. JAMA Intern Med. 2018;178(4):494–501.

Article  PubMed  PubMed Central  Google Scholar 

John E, Hopper J, Beck J, et al. The Breast Cancer Family Registry: an infrastructure for cooperative multinational, interdisciplinary and translational studies of the genetic epidemiology of breast cancer. Breast Cancer Res. 2004;6(4):R375–89.

Article  PubMed  PubMed Central  Google Scholar 

Terry MB, Phillips K-A, Daly MB, et al. Cohort profile: the breast cancer prospective family study cohort (ProF-SC). Int J Epidemiol. 2015;45:1–10.

Google Scholar 

Soltow QA, Strobel FH, Mansfield KG, Wachtman L, Park Y, Jones DP. High-performance metabolic profiling with dual chromatography-Fourier-transform mass spectrometry (DC-FTMS) for study of the exposome. Metabolomics. 2013;9(1 Suppl):S132–43.

Article  PubMed  Google Scholar 

Yu T, Park Y, Li S, Jones DP. Hybrid feature detection and information accumulation using high-resolution LC–MS metabolomics data. J Proteome Res. 2013;12(3):1419–27.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Uppal K, Soltow QA, Strobel FH, et al. xMSanalyzer: automated pipeline for improved feature detection and downstream analysis of large-scale, non-targeted metabolomics data. BMC Bioinform. 2013;14(1):15.

Article  Google Scholar 

Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–27.

Article  PubMed  Google Scholar 

van den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genom. 2006;7:142.

Article  Google Scholar 

Schymanski EL, Jeon J, Gulde R, et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol. 2014;48(4):2097–8.

Article  PubMed  CAS  Google Scholar 

Sumner LW, Amberg A, Barrett D, et al. Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics. 2007;3(3):211–21.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Lee A, Mavaddat N, Wilcox AN, et al. BOADICEA: a comprehensive breast cancer risk prediction modelincorporating genetic and nongenetic risk factors. Genet Med. 2019;21(8):1708–18.

Article  PubMed  PubMed Central  Google Scholar 

Antoniou AC, Cunningham AP, Peto J, Evans DG, Lalloo F, Narod SA. The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br J Cancer. 2008;98:1457–66.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–3.

Article  PubMed  PubMed Central  CAS  Google Scholar 

Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol. 2017;13(11): e1005752.

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif