H. Sun, P. Saeedi, S. Karuranga et al. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diab. Res. Clin. Pract. 183, 109119 (2022). https://doi.org/10.1016/j.diabres.2021.109119
E. Standl, K. Khunti, T.B. Hansen et al. The global epidemics of diabetes in the 21st century: current situation and perspectives. Eur. J. Prev. Cardiol. 26, 7–14 (2019). https://doi.org/10.1177/2047487319881021
D.M.F. Ingrosso, M. Primavera, S. Samvelyan et al. Stress and diabetes mellitus: pathogenetic mechanisms and clinical outcome. Horm. Res. Paediatr. 96, 34–43 (2023). https://doi.org/10.1159/000522431
Article CAS PubMed Google Scholar
J. Juan, H. Yang, Prevalence, prevention, and lifestyle intervention of gestational diabetes mellitus in China. Int. J. Environ. Res. Public Health 17, 9517 (2020). https://doi.org/10.3390/ijerph17249517
Article PubMed PubMed Central Google Scholar
J.W.J. Beulens, M.G.M. Pinho, T.C. Abreu et al. Environmental risk factors of type 2 diabetes-an exposome approach. Diabetologia 65, 263–274 (2022). https://doi.org/10.1007/s00125-021-05618-w
Article CAS PubMed Google Scholar
L. Lind, S. Salihovic, P.M. Lind, Mixtures of environmental contaminants and diabetes. Sci. Total Environ. 859, 159993 (2023). https://doi.org/10.1016/j.scitotenv.2022.159993
Article CAS PubMed Google Scholar
J. Zhang, W. Song, Y. Sun et al. Changes in glucose metabolism and mRNA expression of IRS-2 in rats exposed to phoxim and the protective effects of vitamin E. Toxicol. Res. 7, 201–210 (2017). https://doi.org/10.1039/c7tx00243b
M. Czajka, M. Matysiak-Kucharek, B. Jodłowska-Jędrych et al. Organophosphorus pesticides can influence the development of obesity and type 2 diabetes with concomitant metabolic changes. Environ. Res. 178, 108685 (2019). https://doi.org/10.1016/j.envres.2019.108685
Article CAS PubMed Google Scholar
C.M. Park, K.T. Kim, D.Y. Rhyu, Exposure to a low concentration of mixed organochlorine pesticides impairs glucose metabolism and mitochondrial function in L6 myotubes and zebrafish. J. Hazard Mater. 414, 125437 (2021). https://doi.org/10.1016/j.jhazmat.2021.125437
Article CAS PubMed Google Scholar
H. Lee, Y. Gao, E. Ko et al. Nonmonotonic response of type 2 diabetes by low concentration organochlorine pesticide mixture: findings from multi-omics in zebrafish. J. Hazard Mater. 416, 125956 (2021). https://doi.org/10.1016/j.jhazmat.2021.125956
Article CAS PubMed Google Scholar
S. Tyagi, B.K. Mishra, T. Sharma et al. Level of organochlorine pesticide in prediabetic and newly diagnosed diabetes mellitus patients with varying degree of glucose intolerance and insulin resistance among north Indian population. Diab. Metab. J. 45, 558–568 (2021). https://doi.org/10.4093/dmj.2020.0093
X. Guo, H. Wang, Q. Song et al. Association between exposure to organophosphorus pesticides and the risk of diabetes among US adults: cross-sectional findings from the national health and nutrition examination survey. Chemosphere 301, 134471 (2022). https://doi.org/10.1016/j.chemosphere.2022.134471
Article CAS PubMed Google Scholar
G. Velmurugan, K. Swaminathan, S. Mohanraj et al. Association of co-accumulation of arsenic and organophosphate insecticides with diabetes and atherosclerosis in a rural agricultural community: KMCH-NNCD-I study. Acta Diabetol. 57, 1159–1168 (2020). https://doi.org/10.1007/s00592-020-01516-6
Article CAS PubMed Google Scholar
J.Á. Hernández-Mariano, M.C. Baltazar-Reyes, E. Salazar-Martínez et al. Exposure to the pesticide DDT and risk of diabetes and hypertension: systematic review and meta-analysis of prospective studies. Int. J. Hyg. Environ. Health 239, 113865 (2022). https://doi.org/10.1016/j.ijheh.2021.113865
Article CAS PubMed Google Scholar
X. Yao, S. Geng, L. Zhu et al. Environmental pollutants exposure and gestational diabetes mellitus: Evidence from epidemiological and experimental studies. Chemosphere 332, 138866 (2023). https://doi.org/10.1016/j.chemosphere.2023.138866
Article CAS PubMed Google Scholar
F. Cao, Z. Li, Q. He et al. Occurrence, spatial distribution, source, and ecological risk assessment of organochlorine pesticides in Dongting Lake, China. Environ. Sci. Pollut. Res. Int. 28, 30841–30857 (2021). https://doi.org/10.1007/s11356-021-12743-x
Article CAS PubMed Google Scholar
F. Deng, J. Sun, R. Dou et al. Contamination of pyrethroids in agricultural soils from the Yangtze River Delta, China. Sci. Total Environ. 731, 139181 (2020). https://doi.org/10.1016/j.scitotenv.2020.139181
Article CAS PubMed Google Scholar
H. Lamat, M.P. Sauvant-Rochat, I. Tauveron et al. Metabolic syndrome and pesticides: a systematic review and meta-analysis. Environ. Pollut. 305, 119288 (2022). https://doi.org/10.1016/j.envpol.2022.119288
Article CAS PubMed Google Scholar
P.A. Modesti, G. Reboldi, F.P. Cappuccio et al. Panethnic differences in blood pressure in Europe: a systematic review and meta-analysis. PLoS ONE 11, e0147601 (2016). https://doi.org/10.1371/journal.pone.0147601
Article CAS PubMed PubMed Central Google Scholar
T.B. Huedo-Medina, J. Sánchez-Meca, F. Marín-Martínez et al. Assessing heterogeneity in meta-analysis: q statistic or I2 index? Psychol. Methods 11, 193–206 (2006). https://doi.org/10.1037/1082-989X.11.2.193
Q. Jing, J. Liu, A. Chen et al. The spatial-temporal chemical footprint of pesticides in China from 1999 to 2018. Environ. Sci. Pollut. Res. Int. 29, 75539–75549 (2022). https://doi.org/10.1007/s11356-022-20602-6
Article CAS PubMed Google Scholar
Q. Zhu, Y. Yang, Y. Zhong et al. Synthesis, insecticidal activity, resistance, photodegradation and toxicity of pyrethroids (A review). Chemosphere 254, 126779 (2020). https://doi.org/10.1016/j.chemosphere.2020.126779
Article CAS PubMed Google Scholar
W. Tang, D. Wang, J. Wang et al. Pyrethroid pesticide residues in the global environment: an overview. Chemosphere 191, 990–1007 (2018). https://doi.org/10.1016/j.chemosphere.2017.10.115
Article CAS PubMed Google Scholar
E. Evangelou, G. Ntritsos, M. Chondrogiorgi et al. Exposure to pesticides and diabetes: a systematic review and meta-analysis. Environ. Int. 91, 60–68 (2016). https://doi.org/10.1016/j.envint.2016.02.013
Article CAS PubMed Google Scholar
M. Tudi, H. Daniel Ruan, L. Wang et al. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health 18, 1112 (2021). https://doi.org/10.3390/ijerph18031112
Article CAS PubMed PubMed Central Google Scholar
R.M. Gutgesell, E.E. Tsakiridis, S. Jamshed et al. Impact of pesticide exposure on adipose tissue development and function. Biochem. J. 477, 2639–2653 (2020). https://doi.org/10.1042/BCJ20200324
Article CAS PubMed Google Scholar
E. Ko, M. Choi, S. Shin, Bottom-line mechanism of organochlorine pesticides on mitochondria dysfunction linked with type 2 diabetes. J. Hazard Mater. 393, 122400 (2020). https://doi.org/10.1016/j.jhazmat.2020.122400
Article CAS PubMed Google Scholar
N. Tawar, B.D. Banerjee, S.V. Madhu et al. Association of organochlorine pesticides with genetic markers of endoplasmic reticulum stress in type 2 diabetes mellitus: a case-control study among the North-Indian population. Front. Endocrinol. 13, 841463 (2022). https://doi.org/10.3389/fendo.2022.841463
J. Shi, D. Wei, C. Ma et al. Combined effects of organochlorine pesticides on type 2 diabetes mellitus: Insights from endocrine disrupting effects of hormones. Environ. Pollut. 341, 122867 (2024). https://doi.org/10.1016/j.envpol.2023.122867
留言 (0)