Consequences of trisomy 21 for brain development in Down syndrome

Quinonez, S. C. & Barsh, G. in Pathophysiology of Disease: An Introduction to Clinical Medicine (eds Hammer, G. D. & McPhee, S. J.) Ch. 2 (McGraw-Hill Education, 2019).

Becker, L., Mito, T., Takashima, S. & Onodera, K. Growth and development of the brain in Down syndrome. Prog. Clin. Biol. Res. 373, 133–152 (1991). This review summarizes the neuronal alterations (cortical lamination, reduced dendritic ramifications and diminished synapse formation) and non-neuronal alterations observed in the early postnatal Down syndrome brain and relates them to intellectual disability.

CAS  PubMed  Google Scholar 

Coyle, J. T., Oster-Granite, M. L. & Gearhart, J. D. The neurobiologic consequences of Down syndrome. Brain Res. Bull. 16, 773–787 (1986).

Article  CAS  PubMed  Google Scholar 

Wisniewski, K. E. Down syndrome children often have brain with maturation delay, retardation of growth, and cortical dysgenesis. Am. J. Med. Genet. Suppl. 7, 274–281 (1990).

CAS  PubMed  Google Scholar 

Fidler, D. J., Hepburn, S. L., Mankin, G. & Rogers, S. J. Praxis skills in young children with Down syndrome, other developmental disabilities, and typically developing children. Am. J. Occup. Ther. 59, 129–138 (2005).

Article  PubMed  Google Scholar 

Fukami-Gartner, A. et al. Comprehensive volumetric phenotyping of the neonatal brain in Down syndrome. Cereb. Cortex 33, 8921–8941 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Pinter, J. D., Eliez, S., Schmitt, J. E., Capone, G. T. & Reiss, A. L. Neuroanatomy of Down’s syndrome: a high-resolution MRI study. Am. J. Psychiatry 158, 1659–1665 (2001). This high-resolution MRI study confirms that volumetric brain differences occur at early ages in Down syndrome.

Article  CAS  PubMed  Google Scholar 

Menghini, D., Costanzo, F. & Vicari, S. Relationship between brain and cognitive processes in Down syndrome. Behav. Genet. 41, 381–393 (2011). This study has compared grey matter density in adolescents with Down syndrome to controls and has correlated the data with neuropsychological measures.

Article  PubMed  Google Scholar 

Carducci, F. et al. Whole-brain voxel-based morphometry study of children and adolescents with Down syndrome. Funct. Neurol. 28, 19–28 (2013).

PubMed  PubMed Central  Google Scholar 

Baburamani, A. A., Patkee, P. A., Arichi, T. & Rutherford, M. A. New approaches to studying early brain development in Down syndrome. Dev. Med. Child Neurol. 61, 867–879 (2019). This paper reviews recent advances in magnetic resonance imaging that allow non-invasive visualization of the macrostructure and microstructure of the fetal and neonatal Down syndrome brain.

Article  PubMed  PubMed Central  Google Scholar 

Baburamani, A. A. et al. Assessment of radial glia in the frontal lobe of fetuses with Down syndrome. Acta Neuropathol. Commun. 8, 141 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

McCann, B. et al. Structural magnetic resonance imaging demonstrates volumetric brain abnormalities in Down syndrome: newborns to young adults. Neuroimage Clin. 32, 102815 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Tarui, T. et al. Quantitative MRI analyses of regional brain growth in living fetuses with Down syndrome. Cereb. Cortex 30, 382–390 (2020).

Article  PubMed  Google Scholar 

Yun, H. J. et al. Regional alterations in cortical sulcal depth in living fetuses with Down syndrome. Cereb. Cortex 31, 757–767 (2021).

Article  PubMed  Google Scholar 

Shiohama, T., Levman, J., Baumer, N. & Takahashi, E. Structural magnetic resonance imaging-based brain morphology study in infants and toddlers with Down syndrome: the effect of comorbidities. Pediatr. Neurol. 100, 67–73 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Hamner, T., Udhnani, M. D., Osipowicz, K. Z. & Lee, N. R. Pediatric brain development in Down syndrome: a field in its infancy. J. Int. Neuropsychol. Soc. 24, 966–976 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Risgaard, K. A., Sorci, I. A., Mohan, S. & Bhattacharyya, A. Meta-analysis of Down syndrome cortical development reveals underdeveloped state of the science. Front. Cell Neurosci. 16, 915272 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Freeburn, A. & Munn, R. G. K. Signalling pathways contributing to learning and memory deficits in the Ts65Dn mouse model of Down syndrome. Neuronal Signal. 5, Ns20200011 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ishihara, K. Genes associated with disturbed cerebral neurogenesis in the embryonic brain of mouse models of Down syndrome. Genes 12, 1598 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Moyer, A. J., Gardiner, K. & Reeves, R. H. All creatures great and small: new approaches for understanding Down syndrome genetics. Trends Genet. 37, 444–459 (2021).

Article  CAS  PubMed  Google Scholar 

Tosh, J., Tybulewicz, V. & Fisher, E. M. C. Mouse models of aneuploidy to understand chromosome disorders. Mamm. Genome 33, 157–168 (2022).

Article  CAS  PubMed  Google Scholar 

Haydar, T. F. & Reeves, R. H. Trisomy 21 and early brain development. Trends Neurosci. 35, 81–91 (2012).

Article  CAS  PubMed  Google Scholar 

Sousa, A. M. M., Meyer, K. A., Santpere, G., Gulden, F. O. & Sestan, N. Evolution of the human nervous system function, structure, and development. Cell 170, 226–247 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sherwood, C. C., Bauernfeind, A. L., Bianchi, S., Raghanti, M. A. & Hof, P. R. Human brain evolution writ large and small. Prog. Brain Res. 195, 237–254 (2012).

Article  PubMed  Google Scholar 

Silbereis, J. C., Pochareddy, S., Zhu, Y., Li, M. & Sestan, N. The cellular and molecular landscapes of the developing human central nervous system. Neuron 89, 248–268 (2016). This comprehensive review highlights the molecular and cellular processes of the developing human CNS, with focus on the cerebral neocortex.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lui, J. H., Hansen, D. V. & Kriegstein, A. R. Development and evolution of the human neocortex. Cell 146, 18–36 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Geschwind, D. H. & Rakic, P. Cortical evolution: judge the brain by its cover. Neuron 80, 633–647 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhao, X. & Bhattacharyya, A. Human models are needed for studying human neurodevelopmental disorders. Am. J. Hum. Genet. 103, 829–857 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tao, Y. & Zhang, S. C. Neural subtype specification from human pluripotent stem cells. Cell Stem Cell 19, 573–586 (2016).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qi, Y. et al. Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat. Biotechnol. 35, 154–163 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, D. S., Ross, P. J., Zaslavsky, K. & Ellis, J. Optimizing neuronal differentiation from induced pluripotent stem cells to model ASD. Front. Cell Neurosci. 8, 109 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Klein, J. A. & Haydar, T. F. Neurodevelopment in Down syndrome: concordance in humans and models. Front. Cell Neurosci. 16, 941855 (2022).

Article 

留言 (0)

沒有登入
gif